Conformally invariant metrics and quasiconformal mappings
著者
書誌事項
Conformally invariant metrics and quasiconformal mappings
(Springer monographs in mathematics)
Springer, c2020
大学図書館所蔵 件 / 全14件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
Includes bibliographical references (p. 469-492) and indexes
内容説明・目次
内容説明
This book is an introduction to the theory of quasiconformal and quasiregular mappings in the euclidean n-dimensional space, (where n is greater than 2). There are many ways to develop this theory as the literature shows. The authors' approach is based on the use of metrics, in particular conformally invariant metrics, which will have a key role throughout the whole book. The intended readership consists of mathematicians from beginning graduate students to researchers. The prerequisite requirements are modest: only some familiarity with basic ideas of real and complex analysis is expected.
目次
Part I: Introduction and Review.- Introduction.- A Survey of QuasiregularMappings.- Part II: Conformal Geometry.- Moebius Transformations.- Hyperbolic Geometry.- Generalized Hyperbolic Geometries.- Metrics and Geometry.- Part III: Modulus and Capacity.- The Modulus of a Curve Family.- The Modulus as a Set Function.- The Capacity of a Condenser.- Conformal Invariants.- Part IV: Intrinsic Geometry.- Hyperbolic Type Metrics.- Comparison of Metrics.- Local Convexity of Balls.- Inclusion Results for Balls.- Part V: QuasiregularMappings.- Basic Properties of QuasiregularMappings.- Distortion Theory.- Dimension-Free Theory.- Metrics and Maps.- Teichmuller's Displacement Problem.- Part VI: Solutions.- Solutions to Exercises.
「Nielsen BookData」 より