Conformally invariant metrics and quasiconformal mappings

著者

書誌事項

Conformally invariant metrics and quasiconformal mappings

Parisa Hariri, Riku Klén, Matti Vuorinen

(Springer monographs in mathematics)

Springer, c2020

大学図書館所蔵 件 / 14

この図書・雑誌をさがす

注記

Includes bibliographical references (p. 469-492) and indexes

内容説明・目次

内容説明

This book is an introduction to the theory of quasiconformal and quasiregular mappings in the euclidean n-dimensional space, (where n is greater than 2). There are many ways to develop this theory as the literature shows. The authors' approach is based on the use of metrics, in particular conformally invariant metrics, which will have a key role throughout the whole book. The intended readership consists of mathematicians from beginning graduate students to researchers. The prerequisite requirements are modest: only some familiarity with basic ideas of real and complex analysis is expected.

目次

Part I: Introduction and Review.- Introduction.- A Survey of QuasiregularMappings.- Part II: Conformal Geometry.- Moebius Transformations.- Hyperbolic Geometry.- Generalized Hyperbolic Geometries.- Metrics and Geometry.- Part III: Modulus and Capacity.- The Modulus of a Curve Family.- The Modulus as a Set Function.- The Capacity of a Condenser.- Conformal Invariants.- Part IV: Intrinsic Geometry.- Hyperbolic Type Metrics.- Comparison of Metrics.- Local Convexity of Balls.- Inclusion Results for Balls.- Part V: QuasiregularMappings.- Basic Properties of QuasiregularMappings.- Distortion Theory.- Dimension-Free Theory.- Metrics and Maps.- Teichmuller's Displacement Problem.- Part VI: Solutions.- Solutions to Exercises.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

ページトップへ