Basic calculus of planetary orbits and interplanetary flight : the missions of the Voyagers, Cassini, and Juno
著者
書誌事項
Basic calculus of planetary orbits and interplanetary flight : the missions of the Voyagers, Cassini, and Juno
Springer, c2020
大学図書館所蔵 全5件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. 359-366) and index
内容説明・目次
内容説明
Intended for a one- or two-semester course, this text applies basic, one-variable calculus to analyze the motion both of planets in their orbits as well as interplanetary spacecraft in their trajectories. The remarkable spacecraft missions to the inner and outermost reaches of our solar system have been one of the greatest success stories of modern human history. Much of the underlying mathematical story is presented alongside the astonishing images and extensive data that NASA's Voyager, NEAR-Shoemaker, Cassini, and Juno missions have sent back to us.
First and second year college students in mathematics, engineering, or science, and those seeking an enriching independent study, will experience the mathematical language and methods of single variable calculus within their application to relevant conceptual and strategic aspects of the navigation of a spacecraft. The reader is expected to have taken one or two semesters of the basic calculus of derivatives, integrals, and the role that limits play. Additional prerequisites include knowledge of coordinate plane geometry, basic trigonometry, functions and graphs, including trig, inverse, exponential, and log functions.
The discussions begin with the rich history of humanity's efforts to understand the universe from the Greeks, to Newton and the Scientific Revolution, to Hubble and galaxies, to NASA and the space missions. The calculus of polar functions that plays a central mathematical role is presented in a self-contained way in complete detail. Each of the six chapters is followed by an extensive problem set that deals with and also expands on the concerns of the chapter. The instructor has the flexibility to engage them with greater or lesser intensity.
"I have been an aerospace engineer for 39 years and honestly, it would be hard for me to overstate how valuable I believe this book will be to numerous scientific and engineering disciplines and in particular to the future of aerospace engineering ... This book is perfectly crafted to motivate, educate, and prepare the scientists and engineers who wish to reach for the sky and beyond." -Dr. Mario Zoccoli, Aerospace Engineer, NASA and Lockheed Martin
目次
Preface.- 1. From Kepler to Newton to a Picture of the Universe.- 2. Exploring the Solar System.- 3. Calculus of Functions in Polar Coordinates.- 4. Centripetal Force and Resulting Trajectories.- 5. Elliptical Orbits and their Precession.- 6. Mathematics of Interplanetary Flight.- References.- Index.
「Nielsen BookData」 より