Charge transport in low dimensional semiconductor structures : the maximum entropy approach
著者
書誌事項
Charge transport in low dimensional semiconductor structures : the maximum entropy approach
(Mathematics in industry / editors Hans-Georg Bock ... [et al.], 31 . The European consortium for mathematics in industry)
Springer, c2020
大学図書館所蔵 全2件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references(p. 325-333) and index
内容説明・目次
内容説明
This book offers, from both a theoretical and a computational perspective, an analysis of macroscopic mathematical models for description of charge transport in electronic devices, in particular in the presence of confining effects, such as in the double gate MOSFET. The models are derived from the semiclassical Boltzmann equation by means of the moment method and are closed by resorting to the maximum entropy principle. In the case of confinement, electrons are treated as waves in the confining direction by solving a one-dimensional Schroedinger equation obtaining subbands, while the longitudinal transport of subband electrons is described semiclassically. Limiting energy-transport and drift-diffusion models are also obtained by using suitable scaling procedures. An entire chapter in the book is dedicated to a promising new material like graphene. The models appear to be sound and sufficiently accurate for systematic use in computer-aided design simulators for complex electron devices. The book is addressed to applied mathematicians, physicists, and electronic engineers. It is written for graduate or PhD readers but the opening chapter contains a modicum of semiconductor physics, making it self-consistent and useful also for undergraduate students.
目次
Band Structure and Boltzmann Equation.- Maximum Entropy Principle.- Application of MEP to Charge Transport in Semiconductors.- Application of MEP to Silicon.- Some Formal Properties of the Hydrodynamical Model.- Quantum Corrections to the Semiclassical Models.- Mathematical Models for the Double-Gate MOSFET.- Numerical Method and Simulations.- Application of MEP to Charge Transport in Graphene.
「Nielsen BookData」 より