A course in algebraic error-correcting codes
著者
書誌事項
A course in algebraic error-correcting codes
(Compact textbooks in mathematics)
Birkhäuser , Springer, c2020
- : pbk
大学図書館所蔵 件 / 全5件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
Includes bibliographical references (p. 171-173) and index
内容説明・目次
内容説明
This textbook provides a rigorous mathematical perspective on error-correcting codes, starting with the basics and progressing through to the state-of-the-art. Algebraic, combinatorial, and geometric approaches to coding theory are adopted with the aim of highlighting how coding can have an important real-world impact. Because it carefully balances both theory and applications, this book will be an indispensable resource for readers seeking a timely treatment of error-correcting codes.
Early chapters cover fundamental concepts, introducing Shannon's theorem, asymptotically good codes and linear codes. The book then goes on to cover other types of codes including chapters on cyclic codes, maximum distance separable codes, LDPC codes, p-adic codes, amongst others. Those undertaking independent study will appreciate the helpful exercises with selected solutions.
A Course in Algebraic Error-Correcting Codes suits an interdisciplinary audience at the Masters level, including students of mathematics, engineering, physics, and computer science. Advanced undergraduates will find this a useful resource as well. An understanding of linear algebra is assumed.
目次
Euclidean Plane.- Sphere.- Stereographic Projection and Inversions.- Hyperbolic Plane.- Lorentz-Minkowski Plane.- Geometry of Special Relativity.- Answers to Selected Exercises.- Index.
「Nielsen BookData」 より