The bounded and precise word problems for presentations of groups
著者
書誌事項
The bounded and precise word problems for presentations of groups
(Memoirs of the American Mathematical Society, no. 1281)
American Mathematical Society, c2020
大学図書館所蔵 件 / 全7件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
"March 2020, volume 264, number 1281 (fourth of 6 numbers)"
Includes bibliographical reference (p. 105-106)
内容説明・目次
内容説明
The author introduces and studies the bounded word problem and the precise word problem for groups given by means of generators and defining relations. For example, for every finitely presented group, the bounded word problem is in NP, i.e., it can be solved in nondeterministic polynomial time, and the precise word problem is in PSPACE, i.e., it can be solved in polynomial space. The main technical result of the paper states that, for certain finite presentations of groups, which include the Baumslag-Solitar one-relator groups and free products of cyclic groups, the bounded word problem and the precise word problem can be solved in polylogarithmic space.
As consequences of developed techniques that can be described as calculus of brackets, the author obtains polylogarithmic space bounds for the computational complexity of the diagram problem for free groups, for the width problem for elements of free groups, and for computation of the area defined by polygonal singular closed curves in the plane. The author also obtains polynomial time bounds for these problems.
「Nielsen BookData」 より