Heavy-tailed time series

著者

書誌事項

Heavy-tailed time series

Rafał Kulik, Philippe Soulier

(Springer series in operations research and financial engineering)

Springer, c2020

大学図書館所蔵 件 / 8

この図書・雑誌をさがす

注記

Includes bibliographical references (p. 659-675) and index

内容説明・目次

内容説明

This book aims to present a comprehensive, self-contained, and concise overview of extreme value theory for time series, incorporating the latest research trends alongside classical methodology. Appropriate for graduate coursework or professional reference, the book requires a background in extreme value theory for i.i.d. data and basics of time series. Following a brief review of foundational concepts, it progresses linearly through topics in limit theorems and time series models while including historical insights at each chapter's conclusion. Additionally, the book incorporates complete proofs and exercises with solutions as well as substantive reference lists and appendices, featuring a novel commentary on the theory of vague convergence.

目次

Regular variation.- Regularly varying random variables.- Regularly varying random vectors.- Dealing with extremal independence.- Regular variation of series and random sums.- Regularly varying time series.- Limit theorems.- Convergence of clusters-. Point process convergence.- Convergence to stable and extremal processes.- The tall empirical and quantile processes.- Estimation of cluster functionals.- Estimation for extremally independent time series.- Bootstrap.- Time series models.- Max-stable processes.- Markov chains.- Moving averages.- Long memory processes.- Appendices.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

  • NII書誌ID(NCID)
    BC01785406
  • ISBN
    • 9781071607350
  • 出版国コード
    us
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    New York
  • ページ数/冊数
    xix, 681 p.
  • 大きさ
    25 cm
  • 親書誌ID
ページトップへ