A first course in ergodic theory

Author(s)
    • Dajani, Karma
    • Kalle, Charlene
Bibliographic Information

A first course in ergodic theory

Karma Dajani, Charlene Kalle

Chapman & Hall/CRC Press, 2021

1st ed.

Search this Book/Journal
Note

Includes bibliographical references (p.241-246) and index

Description and Table of Contents

Description

A First Course in Ergodic Theory provides readers with an introductory course in Ergodic Theory. This textbook has been developed from the authors' own notes on the subject, which they have been teaching since the 1990s. Over the years they have added topics, theorems, examples and explanations from various sources. The result is a book that is easy to teach from and easy to learn from - designed to require only minimal prerequisites. Features Suitable for readers with only a basic knowledge of measure theory, some topology and a very basic knowledge of functional analysis Perfect as the primary textbook for a course in Ergodic Theory Examples are described and are studied in detail when new properties are presented.

Table of Contents

Preface. Author Bios. 1. Measure preservingness and basic examples. 1.1. What is Ergodic Theory. 1.2. Measure Preserving Transformations. 1.3. Basic Examples. 2. Recurrence and Ergodicity. 2.1. Recurrence. 2.2. Ergodicity. 2.3. Examples of Ergodic Transformations. 3. The Pointwise Ergodic Theorem and its consequences. 3.2. Normal Numbers. 3.3. Characterization of Irreducible Markov Chains. 3.4. Mixing. 4. More Ergodic Theorem. The mean Ergodic Theorem. 4.2. The Hurewicz Erogdic Theorem. 5. Measure Preserving Isomorphisms. 5.2. Factor Maps. 5.3. Natural Extensions. 6. The Perron-Frobenius Operator. 6.1. Absolutely Continuous Invariants Measures. 6.2. Exactness. Densities for Piecewise Monotnoe Interval Maps. 7. Invariant Measures for Continuous Transformations. 7.1. Existence. 7.2. Unique Ergodicity and Inform Distributions. 7.3. Some Topological Dynamics. 8. Continued Fractions. 8.1. Basic Properties of Regular Continue Fractions. 8.2. Ergodic Properties of Gauss Map. 8.3. Natural Extension and the Doeblin-Lenstra Conjecture. 8.4. Other Continue Fraction Transformation. 9. Entropy. 9.1. Randomness and Information. 9.2. Definitions and Properties. Calculation of Entropy and Examples. 9.4. The Shannon-McMillan-Breiman Theorem. 9.5. Lochs' Theorem. 10. The Variational Principle. 10.1 Topological Entropy. 10.2. Main Theorem. 10.3. Measures of Maximal Entropy. 11. Infinite Ergodic Theory. 11.1 Examples of Infinite Measure Dynamical Systems. 11.2. Conservative and Dissipative Part. 11.3. Induced Systems. 11.4. Jump Transformations. 11.5. Ergodic Theorem for Infinite Measure Systems. 12. Appendix. 12.1. Topology. 12.2. Measure Theory. 12.3 Lebesgue Spaces. 12.4. Lebesgue Integration and Convergence Results. 12.5. Hilbert's Spaces. 12.6. Borel Measures on Compact Metric Spaces. 12.7. Functions of Bounded Variation. Bibliography. Index.

by "Nielsen BookData"

Details
  • NCID
    BC0543358X
  • ISBN
    • 9780367226206
  • LCCN
    2021000936
  • Country Code
    us
  • Title Language Code
    eng
  • Text Language Code
    eng
  • Place of Publication
    Boca Raton
  • Pages/Volumes
    xiii, 253 p.
  • Size
    25 cm
  • Classification
  • Subject Headings
Page Top