Emmy Noether : Mathematician Extraordinaire
著者
書誌事項
Emmy Noether : Mathematician Extraordinaire
Springer Nature Switzerland AG, c2021
大学図書館所蔵 全4件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references and index
内容説明・目次
内容説明
Although she was famous as the "mother of modern algebra," Emmy Noether's life and work have never been the subject of an authoritative scientific biography. Emmy Noether - Mathematician Extraordinaire represents the most comprehensive study of this singularly important mathematician to date. Focusing on key turning points, it aims to provide an overall interpretation of Noether's intellectual development while offering a new assessment of her role in transforming the mathematics of the twentieth century.Hermann Weyl, her colleague before both fled to the United States in 1933, fully recognized that Noether's dynamic school was the very heart and soul of the famous Goettingen community. Beyond her immediate circle of students, Emmy Noether's lectures and seminars drew talented mathematicians from all over the world. Four of the most important were B.L. van der Waerden, Pavel Alexandrov, Helmut Hasse, and Olga Taussky. Noether's classic papers on ideal theory inspired van der Waerden to recast his research in algebraic geometry. Her lectures on group theory motivated Alexandrov to develop links between point set topology and combinatorial methods. Noether's vision for a new approach to algebraic number theory gave Hasse the impetus to pursue a line of research that led to the Brauer-Hasse-Noether Theorem, whereas her abstract style clashed with Taussky's approach to classical class field theory during a difficult time when both were trying to find their footing in a foreign country.
Although similar to Proving It Her Way: Emmy Noether, a Life in Mathematics, this lengthier study addresses mathematically minded readers. Thus, it presents a detailed analysis of Emmy Noether's work with Hilbert and Klein on mathematical problems connected with Einstein's theory of relativity. These efforts culminated with her famous paper "Invariant Variational Problems," published one year before she joined the Goettingen faculty in 1919.
目次
Preface.- 1 Max and Emmy Noether: Mathematics in Erlangen.- 2 Emmy Noether's Long Struggle to Habilitate in Goettingen.- 3 Emmy Noether's Role in the Relativity Revolution.- 4 Noether's Early Contributions to Modern Algebra.- 5 Noether's International School in Modern Algebra.- 6 Emmy Noether's Triumphal Years.- 7 Cast out of her Country.- 8 Emmy Noether in Bryn Mawr.- 9 Memories and Legacies of Emmy Noether.- Bibliography.- Name Index.
「Nielsen BookData」 より