Anomalies in partial differential equations
著者
書誌事項
Anomalies in partial differential equations
(Springer INdAM series / editor in chief V. Ancona, v. 43)
Springer, c2021
大学図書館所蔵 全2件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Other editors: Daniele Del Santo, Alberto Parmeggiani, Michael Reissig
Includes bibliographical references
内容説明・目次
内容説明
The contributions contained in the volume, written by leading experts in their respective fields, are expanded versions of talks given at the INDAM Workshop "Anomalies in Partial Differential Equations" held in September 2019 at the Istituto Nazionale di Alta Matematica, Dipartimento di Matematica "Guido Castelnuovo", Universita di Roma "La Sapienza". The volume contains results for well-posedness and local solvability for linear models with low regular coefficients. Moreover, nonlinear dispersive models (damped waves, p-evolution models) are discussed from the point of view of critical exponents, blow-up phenomena or decay estimates for Sobolev solutions. Some contributions are devoted to models from applications as traffic flows, Einstein-Euler systems or stochastic PDEs as well. Finally, several contributions from Harmonic and Time-Frequency Analysis, in which the authors are interested in the action of localizing operators or the description of wave front sets, complete the volume.
目次
Ascanelli, A. and Cappiello, M., Semilinear p-evolution equations in weighted Sobolev spaces.- Ascanelli, A. et al., Random-field Solutions of Linear Parabolic Stochastic Partial Dierential Equations with Polynomially Bounded Variable Coefficients.- Brauer, U. and Karp, l., The non-isentropic Einstein-Euler system written in a symmetric hyperbolicfor.- Chen, W. and Palmieri, A., Blow-up result for a semilinear wave equation with a non linear memory term.- Ciani, S. and Vespri, V., An Introduction to Barenblatt Solutions for Anisotropic p-Laplace Equation.- Colombini, F. et al., No loss of derivatives for hyperbolic operators with Zygmund-continuous coecients in time.- Cordero, E., Note on the Wigner distribution and Localization Operators in the quasi-Banach setting.- Corli, A. and Malaguti, E., Wavefronts in traffic flows and crowds dynamics.- D'Abbicco, M., A new critical exponent for the heat and damped wave equations with non linear memory and not integrable data.- Anh Dao, T. and Michael. R., Blow-up results for semi-linear structurally damped -evolution equation.- Rempel Ebert, M. and Marques, J. Critical exponent for a class of semi linear damped wave equations with decaying in time propagation speed.- Federico, S., Local solvability of some partial differential operators with non-smooth coefficients.- G. Feichtinger, A. et al., On exceptional times for point wise convergence of integral kernels in Feynman-Trotter path integral.- Girardi, G. and Wirth, J., Decay estimates for a Klein-Gordon model with time-periodic coefficients.- Thieu Huy, N., Conditional Stability of Semigroups and Periodic Solutions to Evolution Equations.- Oberguggenberger, M., Anomalous solutions to non linear hyperbolic equations.- Rodino, L., and Trapasso, S.I., An introduction to the Gabor wave front set.- Sickel, W., On the Regularity of Characteristic Functions.- Yagdjian, K. et al., Small Data Wave Maps in Cyclic Spacetime
「Nielsen BookData」 より