An introduction to machine learning in quantitative finance

Author(s)

    • Ni, Hao
    • Yu, Guangxi
    • Zheng, Jinsong
    • Dong, Xin

Bibliographic Information

An introduction to machine learning in quantitative finance

Hao Ni, Guangxi Yu, Jinsong Zheng, Xin Dong

(Advanced textbooks in mathematics)

World Scientific Publishing, c2021

  • hbk.

Available at  / 2 libraries

Search this Book/Journal

Description and Table of Contents

Description

In today's world, we are increasingly exposed to the words 'machine learning' (ML), a term which sounds like a panacea designed to cure all problems ranging from image recognition to machine language translation. Over the past few years, ML has gradually permeated the financial sector, reshaping the landscape of quantitative finance as we know it.An Introduction to Machine Learning in Quantitative Finance aims to demystify ML by uncovering its underlying mathematics and showing how to apply ML methods to real-world financial data. In this book the authorsFeatured with the balance of mathematical theorems and practical code examples of ML, this book will help you acquire an in-depth understanding of ML algorithms as well as hands-on experience. After reading An Introduction to Machine Learning in Quantitative Finance, ML tools will not be a black box to you anymore, and you will feel confident in successfully applying what you have learnt to empirical financial data!The Python codes contained within An Introduction to Machine Learning in Quantitative Finance have been made publicly available on the author's GitHub: https://github.com/deepintomlf/mlfbook.git

Table of Contents

  • Foreword
  • Acknowledgments
  • Overview of Machine Learning and Financial Applications
  • Supervised Learning
  • Linear Regression and Regularization
  • Tree-based Models
  • Neural Network
  • Cluster Analysis
  • Principal Component Analysis
  • Reinforcement Learning
  • Case Study in Finance: Home Credit Default Risk
  • Bibliography

by "Nielsen BookData"

Related Books: 1-1 of 1

Details

Page Top