Diffusion processes, jump processes, and stochastic differential equations
Author(s)
Bibliographic Information
Diffusion processes, jump processes, and stochastic differential equations
Chapman & Hall/CRC Press, c2022
First edition
- :hbk.
Related Bibliography 1 items
Available at 4 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Includes bibliographical references and index
Description and Table of Contents
Description
Features
Quickly and concisely builds from basic probability theory to advanced topics
Suitable as a primary text for an advanced course in diffusion processes and stochastic differential equations
Useful as supplementary reading across a range of topics.
Table of Contents
- 1. Random variables, vectors, processes and fields. 1.1. Random variables, vectors, and their distributions - a glossary. 1.2. Law of Large Numbers and the Central Limit Theorem. 1.3. Stochastic processes and their finite-dimensional distributions. 1.4. Problems and Exercises. 2. From Random Walk to Brownian Motion. 2.1. Symmetric random walk
- parabolic rescaling and related Fokker-Planck equations. 2.2 Almost sure continuity of sample paths. 2.3 Nowhere differentiability of Brownian motion. 2.4 Hitting times, and other subtle properties of Brownian motion. 2.5. Problems and Exercises. 3. Poisson processes and their mixtures. 3.1. Why Poisson process? 3.2. Covariance structure and finite dimensional distributions. 3.3. Waiting times and inter-jump times. 3.4. Extensions and generalizations. 3.5. Fractional Poisson processes (fPp). 3.6. Problems and Exercises. 4. Levy processes and the Levy-Khinchine formula: basic facts. 4.1. Processes with stationary and independent increments. 4.2. From Poisson processes to Levy processes. 4.3. Infinitesimal generators of Levy processes. 4.4. Selfsimilar Levy processes. 4.5. Properties of -stable motions. 4.6. Infinitesimal generators of -stable motions. 4.7. Problems and Exercises. 5. General processes with independent increments. 5.1. Nonstationary processes with independent increments. 5.2. Stochastic continuity and jump processes. 5.3. Analysis of jump structure. 5.4. Random measures and random integrals associated with jump processes. 5.5. Structure of general I.I. processes. 5.6. Problems and Exercises. 6. Stochastic integrals for Brownian motion and general Levy Processes. 6.1. Wiener random integral. 6.2. Ito's stochastic integral for Brownian motion. 6.3. An instructive example. 6.4. Ito's formula. 6.5. Martingale property of Ito integrals. 6.6. Wiener and Ito-type stochastic integrals for -stable motion and general Levy processes. 6.7. Problems and Exercises. 7. Ito stochastic differential equations. 7.1. Differential equations with random noise. 7.2. Stochastic differential equations: Basic theory. 7.3. SDEs with coefficients depending only on time. 7.4. Population growth model and other examples. 7.5. Ornstein-Uhlenbeck process. 7.6. Systems of SDEs and vector-valued Ito's formula. 7.7. Kalman-Bucy filter. 7.8. Numerical solution of stochastic differential equations. 7.9. Problems and Exercises. 8. Asymmetric exclusion processes and their scaling limits. 8.1. Asymmetric exclusion principles. 8.2. Scaling limit. 8.3. Other queuing regimes related to non-nearest neighbor systems. 8.4. Networks with multiserver nodes and particle systems with state-dependent rates. 8.5. Shock and rarefaction wave solutions for the Riemann problem for conservation laws. 8.6. Problems and Exercises. 9. Nonlinear diffusion equations. 9.1. Hyperbolic equations. 9.2. Nonlinear diffusion approximations. 9.3. Problems and Exercises
by "Nielsen BookData"