Lectures on optimal transport
著者
書誌事項
Lectures on optimal transport
(Collana unitext, v. 130)
Springer, c2021
- : pbk
大学図書館所蔵 全10件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. 245-250)
内容説明・目次
内容説明
This textbook is addressed to PhD or senior undergraduate students in mathematics, with interests in analysis, calculus of variations, probability and optimal transport. It originated from the teaching experience of the first author in the Scuola Normale Superiore, where a course on optimal transport and its applications has been given many times during the last 20 years. The topics and the tools were chosen at a sufficiently general and advanced level so that the student or scholar interested in a more specific theme would gain from the book the necessary background to explore it. After a large and detailed introduction to classical theory, more specific attention is devoted to applications to geometric and functional inequalities and to partial differential equations.
目次
1 Lecture 1: Preliminary notions and the Monge problem.- 2 Lecture 2: The Kantorovich problem.- 3 Lecture 3: The Kantorovich - Rubinstein duality.- 4 Lecture 4: Necessary and sufficient optimality conditions.- 5 Lecture 5: Existence of optimal maps and applications.- 6 Lecture 6: A proof of the Isoperimetric inequality and stability in Optimal Transport.- 7 Lecture 7: The Monge-Ampere equation and Optimal Transport on Riemannian manifolds.- 8 Lecture 8: The metric side of Optimal Transport.- 9 Lecture 9: Analysis on metric spaces and the dynamic formulation of Optimal Transport.- 10 Lecture 10: Wasserstein geodesics, nonbranching and curvature.- 11 Lecture 11: Gradient flows: an introduction.- 12 Lecture 12: Gradient flows: the Brezis-Komura theorem.- 13 Lecture 13: Examples of gradient flows in PDEs.- 14 Lecture 14: Gradient flows: the EDE and EDI formulations.- 15 Lecture 15: Semicontinuity and convexity of energies in the Wasserstein space.- 16 Lecture 16: The Continuity Equation and the Hopf-Lax semigroup.- 17 Lecture 17: The Benamou-Brenier formula.- 18 Lecture 18: An introduction to Otto's calculus.- 19 Lecture 19: Heat flow, Optimal Transport and Ricci curvature.
「Nielsen BookData」 より