Proceedings of the Forum "Math-for-Industry" 2018 : big data analysis, AI, fintech, math in finances and economics
著者
書誌事項
Proceedings of the Forum "Math-for-Industry" 2018 : big data analysis, AI, fintech, math in finances and economics
(Mathematics for industry / editor in chief, Masato Wakayama, v. 35)
Springer, c2021
大学図書館所蔵 件 / 全1件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
Includes bibliographical references
Other editors: Xu Dinghua, Osamu Saeki, Tomoyuki Shirai
内容説明・目次
内容説明
This volume includes selected technical papers presented at the Forum "Math-for-Industry" 2018. The papers written by eminent researchers and academics working in the area of industrial mathematics from the viewpoint of financial mathematics, machine learning, neural networks, inverse problems, stochastic modelling, etc., discuss how the ingenuity of science, technology, engineering and mathematics are and will be expected to be utilized. This volume focuses on the role that mathematics-for-industry can play in interdisciplinary research to develop new methods. The contents are useful for researchers both in academia and industry working in interdisciplinary sectors.
目次
A Brief Review of Some Swarming Models using Stochastic Differential Equations.- Copula-based estimation of Value at Risk for the portfolio problem.- An Overview of Exact Solution Methods for Guaranteed Minimum Death Benefit Options in Variable Annuities.- Determinantal reinforcement learning with techniques to avoid poor local optima.- Surface Denoising based on Normal Filtering in a Robust Statistics Framework.- Mathematical Modeling and Inverse Problem Approaches for Functional.- Clothing Design based on Thermal Mechanism.- Unique continuation on a sphere for Helmholtz equation and its numerical treatments.- Notes on Backward Stochastic Differential Equations for Computing XVA.
「Nielsen BookData」 より