Banach algebras of ultrametric functions
Author(s)
Bibliographic Information
Banach algebras of ultrametric functions
World Scientific, c2022
Available at 6 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
-
Library, Research Institute for Mathematical Sciences, Kyoto University数研
ESC||5||2200043574983
Note
Includes bibliographical references and index
Description and Table of Contents
Description
This book examines ultrametric Banach algebras in general. It begins with algebras of continuous functions, and looks for maximal and prime ideals in connections with ultrafilters on the set of definition. The multiplicative spectrum has shown to be indispensable in ultrametric analysis and is described in the general context and then, in various cases of Banach algebras.Applications are made to various kind of functions: uniformly continuous functions, Lipschitz functions, strictly differentiable functions, defined in a metric space. Analytic elements in an algebraically closed complete field (due to M Krasner) are recalled with most of their properties linked to T-filters and applications to their Banach algebras, and to the ultrametric holomorphic functional calculus, with applications to spectral properties. The multiplicative semi-norms of Krasner algebras are characterized by circular filters with a metric and an order that are examined.The definition of the theory of affinoid algebras due to J Tate is recalled with all the main algebraic properties (including Krasner-Tate algebras). The existence of idempotents associated to connected components of the multiplicative spectrum is described.
by "Nielsen BookData"