Counterexamples in operator theory
著者
書誌事項
Counterexamples in operator theory
Birkhäuser , Springer, c2022
大学図書館所蔵 全5件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. 579-593) and index
内容説明・目次
内容説明
This text is the first of its kind exclusively devoted to counterexamples in operator theory and includes over 500 problems on bounded and unbounded linear operators in Hilbert spaces. This volume is geared towards graduate students studying operator theory, and the author has designated the difficulty level for each counterexample, indicating which ones are also suitable for advanced undergraduate students.
The first half of the book focuses on bounded linear operators, including counterexamples in the areas of operator topologies, matrices of bounded operators, square roots, the spectrum, operator exponentials, and non-normal operators. The second part of the book is devoted to unbounded linear operators in areas such as closedness and closability, self-adjointness, normality, commutativity, and the spectrum, concluding with a chapter that features some open problems. Chapters begin with a brief "Basics" section for the readers' reference, and many of the counterexamples included are the author's original work.
Counterexamples in Operator Theory can be used by students in graduate courses on operator theory and advanced matrix theory. Previous coursework in advanced linear algebra, operator theory, and functional analysis is assumed. Researchers, quantum physicists, and undergraduate students studying functional analysis and operator theory will also find this book to be a useful reference.
目次
Preface.- Part 1. Bounded Linear Operators.- Some Basic Properties.- Basic Classes of Bounded Linear Operators.- Operator Topologies.- Positive Operators.- Matrices of Bounded Operators.- (Square) Roots of Bounded Operators.- Absolute Value. Polar Decomposition.- Spectrum.- Spectral Radius. Numerical Range.- Compact Operators.- Functional Calculi.- Fuglede-Putnam Theorems and Intertwining Relations.- Operator Exponentials.- Nonnormal Operators.- Similarity and Unitary Equivalence.- The Sylvester Equation.- More Questions and Some Open Problems.- Part 2. Unbounded Linear Operators.- Basic Notions.- Closedness.- Adjoints. Symmetric Operators.- Self-adjointness.- (Arbitrary) Square Roots.- Normality.- Absolute Value. Polar Decomposition.- Unbounded Nonnormal Operators.- Commutativity.- The Fuglede-Putnam Theorems and Intertwining Relations.- Commutators.- Spectrum.- Matrices of Unbounded Operators.- Relative Boundedness.- More Questions and Some Open Problems II.- Appendix A: A Quick Review of the Fourier Transform.- Appendix B: A Word on Distributions and Sobolev Spaces.- Bibliography.- Index
「Nielsen BookData」 より