Ultrafilters throughout mathematics
著者
書誌事項
Ultrafilters throughout mathematics
(Graduate studies in mathematics, 220)
American Mathematical Society, c2022
- : hardback
大学図書館所蔵 全18件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. 385-394) and index
内容説明・目次
内容説明
Ultrafilters and ultraproducts provide a useful generalization of the ordinary limit processes which have applications to many areas of mathematics. Typically, this topic is presented to students in specialized courses such as logic, functional analysis, or geometric group theory. In this book, the basic facts about ultrafilters and ultraproducts are presented to readers with no prior knowledge of the subject and then these techniques are applied to a wide variety of topics. The first part of the book deals solely with ultrafilters and presents applications to voting theory, combinatorics, and topology, while also dealing also with foundational issues.
The second part presents the classical ultraproduct construction and provides applications to algebra, number theory, and nonstandard analysis. The third part discusses a metric generalization of the ultraproduct construction and gives example applications to geometric group theory and functional analysis. The final section returns to more advanced topics of a more foundational nature.
The book should be of interest to undergraduates, graduate students, and researchers from all areas of mathematics interested in learning how ultrafilters and ultraproducts can be applied to their specialty.
目次
Ultrafilters and their applications: Ultrafilter basics
Arrow's theorem on fair voting
Ultrafilters in topology
Ramsey theory and combinatorial number theory
Foundational concerns
Classical ultraproducts: Classical ultraproducts
Applicationis to geometry, commutative algebra, and number theory
Ultraproducts and saturation
Nonstandard analysis
Limit groups
Metric ultraproducts and their applications: Metric ultraproducts
Asymptotic cones and Gromov's theorem
Sofic groups
Functional analysis
Advanced topics: Does an ultrapower depend on the ultrafilter?
The Keisler-Shelah theorem
Large cardinals
Appendices: Logic
Set theory
Category theory
Hints and solutions to selected exercises
Bibliography
Index
「Nielsen BookData」 より