Log-linear models and logistic regression
著者
書誌事項
Log-linear models and logistic regression
(Springer texts in statistics)
Springer, 1997
2nd ed
- : pbk
大学図書館所蔵 件 / 全1件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
Earlier ed. published under title: Log-linear models. 1990
Includes bibliographical references (p. [458]-473) and indexes
内容説明・目次
内容説明
The primary focus here is on log-linear models for contingency tables, but in this second edition, greater emphasis has been placed on logistic regression. The book explores topics such as logistic discrimination and generalised linear models, and builds upon the relationships between these basic models for continuous data and the analogous log-linear and logistic regression models for discrete data. It also carefully examines the differences in model interpretations and evaluations that occur due to the discrete nature of the data. Sample commands are given for analyses in SAS, BMFP, and GLIM, while numerous data sets from fields as diverse as engineering, education, sociology, and medicine are used to illustrate procedures and provide exercises. Throughoutthe book, the treatment is designed for students with prior knowledge of analysis of variance and regression.
目次
Two-Dimensional Tables and Simple Logistic Regression.- Three-Dimensional Tables.- Logistic Regression, Logit Models, and Logistic Discrimination.- Independence Relationships and Graphical Models.- Model Selection Methods and Model Evaluation.- Models for Factors with Quantitative Levels.- Fixed and Random Zeros.- Generalized Linear Models.- The Matrix Approach to Log-Linear Models.- The Matrix Approach to Logit Models.- Maximum Likelihood Theory for Log-Linear Models.- Bayesian Binomial Regression.
「Nielsen BookData」 より