Stochastic exponential growth and lattice gases : statistical mechanics of stochastic compounding processes
著者
書誌事項
Stochastic exponential growth and lattice gases : statistical mechanics of stochastic compounding processes
(Springer briefs in applied sciences and technology)
Springer, c2022
- : pbk
大学図書館所蔵 全1件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. 131-132)
内容説明・目次
内容説明
The book discusses a class of discrete time stochastic growth processes for which the growth rate is proportional to the exponential of a Gaussian Markov process. These growth processes appear naturally in problems of mathematical finance as discrete time approximations of stochastic volatility models and stochastic interest rates models such as the Black-Derman-Toy and Black-Karasinski models. These processes can be mapped to interacting one-dimensional lattice gases with long-range interactions.
The book gives a detailed discussion of these statistical mechanics models, including new results not available in the literature, and their implication for the stochastic growth models. The statistical mechanics analogy is used to understand observed non-analytic dependence of the Lyapunov exponents of the stochastic growth processes considered, which is related to phase transitions in the lattice gas system. The theoretical results are applied to simulations of financial models and are illustrated with Mathematica code.
The book includes a general introduction to exponential stochastic growth with examples from biology, population dynamics and finance. The presentation does not assume knowledge of mathematical finance. The new results on lattice gases can be read independently of the rest of the book. The book should be useful to practitioners and academics studying the simulation and application of stochastic growth models.
目次
- 1. Introduction to stochastic growth processes A. Growth processes in economics, biology and ecology B. Stochastic growth with multiplicative noise C. Stochastic growth with Markovian dependence 2. Stochastic growth processes with exponential growth rates D. Exponential growth model driven by a geometric Brownian motion E. Exponential growth model with binomial tree growth rates F. Exp-Ornstein-Uhlenbeck model 3. Lyapunov exponents of the exponential stochastic growth processes G. Numerical illustration: the bank account in the Black-Derman-Toy model H. Lyapunov exponents and their analyticity I. Lattice gas analogy J. Recursion relation for the moments 4. One-dimensional lattice gas models with linear attractive interaction K. Lattice gases with mutual exclusion L. Lattice gas with universal interaction
- mean-field theory M. Kac potentials and the Lebowitz-Penrose theory N. One-dimensional lattice gas with linear attractive interaction: exact results 5. Lattice gas with exponential attractive interactions O. Connection to the Black-Karasinski model P. Exact result for the Lyapunov exponents Q. Limiting case: Kac-Helfand lattice gas and the van der Waals theory 6. Applications R. Monte Carlo simulation of stochastic volatility models S. Asymptotic bond pricing in the Black-Derman-Toy model
「Nielsen BookData」 より