Moduli stacks of étale (φ, Γ)-modules and the existence of crystalline lifts

Bibliographic Information

Moduli stacks of étale (φ, Γ)-modules and the existence of crystalline lifts

Matthew Emerton, Toby Gee

(Annals of mathematics studies, no. 215)

Princeton University Press, 2023

Other Title

Moduli stacks of étale (phi, Gamma)-modules and the existence of crystalline lifts

Search this Book/Journal
Note

Includes bibliographical references (p. [289]-296) and index

Description and Table of Contents

Description

A foundational account of a new construction in the p-adic Langlands correspondence Motivated by the p-adic Langlands program, this book constructs stacks that algebraize Mazur’s formal deformation rings of local Galois representations. More precisely, it constructs Noetherian formal algebraic stacks over Spf Zp that parameterize étale (ϕ, Γ)-modules; the formal completions of these stacks at points in their special fibres recover the universal deformation rings of local Galois representations. These stacks are then used to show that all mod p representations of the absolute Galois group of a p-adic local field lift to characteristic zero, and indeed admit crystalline lifts. The book explicitly describes the irreducible components of the underlying reduced substacks and discusses the relationship between the geometry of these stacks and the Breuil–Mézard conjecture. Along the way, it proves a number of foundational results in p-adic Hodge theory that may be of independent interest.

by "Nielsen BookData"

Related Books: 1-1 of 1
Details
Page Top