Elements of applied bifurcation theory

書誌事項

Elements of applied bifurcation theory

Yuri A. Kuznetsov

(Applied mathematical sciences, v. 112)

Springer, c2023

4th ed

大学図書館所蔵 件 / 12

この図書・雑誌をさがす

注記

Includes bibliographical references (p. 671-690) and index

内容説明・目次

内容説明

Providing readers with a solid basis in dynamical systems theory, as well as explicit procedures for application of general mathematical results to particular problems, the focus here is on efficient numerical implementations of the developed techniques. The book is designed for advanced undergraduates or graduates in applied mathematics, as well as for Ph.D. students and researchers in physics, biology, engineering, and economics who use dynamical systems as model tools in their studies. A moderate mathematical background is assumed, and, whenever possible, only elementary mathematical tools are used. This new edition preserves the structure of the first while updating the context to incorporate recent theoretical developments, in particular new and improved numerical methods for bifurcation analysis.

目次

1 Introduction to Dynamical Systems.- 2 Topological Equivalence, Bifurcations, and Structural Stability of Dynamical Systems.- 3 One-Parameter Bifurcations of Equilibria in Continuous-Time Dynamical Systems.- 4 One-Parameter Bifurcations of Fixed Points in Discrete-Time Dynamical Systems.- 5 Bifurcations of Equilibria and Periodic Orbits in n-Dimensional Dynamical Systems.- 6 Bifurcations of Orbits Homoclinic and Heteroclinic to Hyperbolic Equilibria.- 7 Other One-Parameter Bifurcations in Continuous-Time Dynamical Systems.- 8 Two-Parameter Bifurcations of Equilibria in Continuous-Time Dynamical Systems.- 9 Two-Parameter Bifurcations of Fixed Points in Discrete-Time Dynamical Systems.- 10 Numerical Analysis of Bifurcations.- A Basic Notions from Algebra, Analysis, and Geometry.- A.1 Algebra.- A.1.1 Matrices.- A.1.2 Vector spaces and linear transformations.- A.1.3 Eigenvectors and eigenvalues.- A.1.4 Invariant subspaces, generalized eigenvectors, and Jordan normal form.- A.1.5 Fredholm Alternative Theorem.- A.1.6 Groups.- A.2 Analysis.- A.2.1 Implicit and Inverse Function Theorems.- A.2.2 Taylor expansion.- A.2.3 Metric, normed, and other spaces.- A.3 Geometry.- A.3.1 Sets.- A.3.2 Maps.- A.3.3 Manifolds.- References.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

  • NII書誌ID(NCID)
    BD01831238
  • ISBN
    • 9783031220067
  • 出版国コード
    sz
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    Cham
  • ページ数/冊数
    xxvi, 703 p.
  • 大きさ
    25 cm
  • 分類
  • 件名
  • 親書誌ID
ページトップへ