Generalized radon transforms and imaging by scattered particles : broken rays, cones, and stars in tomography
著者
書誌事項
Generalized radon transforms and imaging by scattered particles : broken rays, cones, and stars in tomography
(Contemporary mathematics and its applications : monographs, expositions, and lecture notes, vol. 6)
World Scientific, c2023
大学図書館所蔵 全5件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references and index
内容説明・目次
内容説明
A generalized Radon transform (GRT) maps a function to its weighted integrals along a family of curves or surfaces. Such operators appear in mathematical models of various imaging modalities. The GRTs integrating along smooth curves and surfaces (lines, planes, circles, spheres, amongst others) have been studied at great lengths for decades, but relatively little attention has been paid to transforms integrating along non-smooth trajectories. Recently, an interesting new class of GRTs emerged at the forefront of research in integral geometry. The two common features of these transforms are the presence of a 'vertex' in their paths of integration (broken rays, cones, and stars) and their relation to imaging techniques based on physics of scattered particles (Compton camera imaging, single scattering tomography, etc).This book covers the relevant imaging modalities, their mathematical models, and the related GRTs. The discussion of the latter comprises a thorough exploration of their known mathematical properties, including injectivity, inversion, range description and microlocal analysis. The mathematical background required for reading most of the book is at the level of an advanced undergraduate student, which should make its content attractive for a large audience of specialists interested in imaging. Mathematicians may appreciate certain parts of the theory that are particularly elegant with connections to functional analysis, PDEs and algebraic geometry.
「Nielsen BookData」 より