Many-body methods for atoms, molecules and clusters
著者
書誌事項
Many-body methods for atoms, molecules and clusters
(Lecture notes in chemistry, v. 94)
Springer, c2018
- : softcover
大学図書館所蔵 全1件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references and index
内容説明・目次
内容説明
This book provides an introduction to many-body methods for applications in quantum chemistry. These methods, originating in field-theory, offer an alternative to conventional quantum-chemical approaches to the treatment of the many-electron problem in molecules. Starting with a general introduction to the atomic and molecular many-electron problem, the book then develops a stringent formalism of field-theoretical many-body theory, culminating in the diagrammatic perturbation expansions of many-body Green's functions or propagators in terms of Feynman diagrams. It also introduces and analyzes practical computational methods, such as the field-tested algebraic-diagrammatic construction (ADC) schemes. The ADC concept can also be established via a wave-function based procedure, referred to as intermediate state representation (ISR), which bridges the gap between propagator and wave-function formulations. Based on the current rapid increase in computer power and the development of efficient computational methods, quantum chemistry has emerged as a potent theoretical tool for treating ever-larger molecules and problems of chemical and physical interest. Offering an introduction to many-body methods, this book appeals to advanced students interested in an alternative approach to the many-electron problem in molecules, and is suitable for any courses dealing with computational methods in quantum chemistry.
目次
I. Many-Electron Systems and the Electron Propagator1. Systems of identical particles 2. Second quantization 3. One-particle Green's function II. Formalism of Diagrammatic Perturbation Theory 4. Perturbation theory for the electron propagator 5. Introducing diagrams 6. Feynman diagrams 7. Time-ordered or Goldstone diagramsIII. Approximations and Computational Schemes 8. Self-energy and the Dyson equation 9. Algebraic-diagrammatic construction (ADC) 10. Direct ADC procedure for the electron propagator 11. Intermediate-state representation (ISR) 12. Order relations and separability IV. N-Electron Excitations 13. Polarization propagator 14. ADC and ISR approaches to the polarization propagator 15. Random-phase approximation (RPA) V. A Look at Related Methods 16. Algebraic propagator methods17. Coupled-cluster methods for generalized excitations Appendix A1 Basic tools A2 Proof of the Gell-Mann and Low theorem A3 Proof of Wick's theorem A4 Time-ordered diagrams: derivation of Goldstone rules A5 Dyson expansion method for the static self-energy part A6 Proofs of order relations A7 Linear response theory and the polarization propagator A8 Superoperator approach to the electron propagator A9 Compilation of ADC expressions
「Nielsen BookData」 より