State-sum models of piecewise linear quantum gravity
著者
書誌事項
State-sum models of piecewise linear quantum gravity
World Scientific, c2023
- : hbk
大学図書館所蔵 全2件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p.169-173)
内容説明・目次
内容説明
This book gives a description of state-sum quantum gravity models which are based on triangulations of a smooth spacetime manifold. It contains detailed descriptions of Regge quantum gravity, spin-foam models and spin-cube models. Some other similar models, like the dynamical triangulations models, are only briefly described, since the sum over the spacetime triangulations is outside the scope of this book.The book also contains a detailed description of the approach where the piecewise linear (PL) manifold corresponding to a smooth manifold triangulation is considered as the basic structure of the spacetime. Hence the PL structure is not an auxiliary tool used to define the gravitational path integral for a smooth spacetime, but it is taken as a physical property of the spacetime. Consequently, it is straightforward to construct a finite gravitational path integral. Another consequence is that the problems of determination of the classical limit and how to calculate the quantum corrections can be solved by using the effective action method. The smooth manifold limit problem is then replaced by the problem of a smooth manifold approximation for the effective action, which can be obtained by using the standard quantum field theory with a physical cutoff.Some physical effects of a PL spacetime quantum gravity theory are also described, one of which is that the cosmological constant spectrum contains the observed value.A short exposition of higher gauge theory is also given, which is a promising way to generalize a gauge symmetry by using the concept of a 2-group. A 2-group is a categorical generalization of a group, and by using this approach one can construct the spin-cube models of quantum gravity.
「Nielsen BookData」 より