Ulam's conjecture on invariance of measure in the Hilbert cube
著者
書誌事項
Ulam's conjecture on invariance of measure in the Hilbert cube
(Frontiers in mathematics)
Springer, c2023
- : pbk
大学図書館所蔵 件 / 全4件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
Includes bibliographical references and index
内容説明・目次
内容説明
This book discusses the process by which Ulam's conjecture is proved, aptly detailing how mathematical problems may be solved by systematically combining interdisciplinary theories. It presents the state-of-the-art of various research topics and methodologies in mathematics, and mathematical analysis by presenting the latest research in emerging research areas, providing motivation for further studies. The book also explores the theory of extending the domain of local isometries by introducing a generalized span.
For the reader, working knowledge of topology, linear algebra, and Hilbert space theory, is essential. The basic theories of these fields are gently and logically introduced. The content of each chapter provides the necessary building blocks to understanding the proof of Ulam's conjecture and are summarized as follows: Chapter 1 presents the basic concepts and theorems of general topology. In Chapter 2, essential concepts and theorems in vector space, normed space, Banach space, inner product space, and Hilbert space, are introduced. Chapter 3 gives a presentation on the basics of measure theory. In Chapter 4, the properties of first- and second-order generalized spans are defined, examined, and applied to the study of the extension of isometries. Chapter 5 includes a summary of published literature on Ulam's conjecture; the conjecture is fully proved in Chapter 6.
目次
Preface.- 1. Topology.- 2. Hilbert spaces.- 3. Measure theory.- 4. Extension of isometries.- 5. History of Ulam's conjecture.- 6. Ulam's conjecture. - Bibliography.- Index.
「Nielsen BookData」 より