Applicable differential geometry
著者
書誌事項
Applicable differential geometry
(London Mathematical Society lecture note series, 59)
Cambridge University Press, 1986
大学図書館所蔵 件 / 全68件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
内容説明・目次
内容説明
This is an introduction to geometrical topics that are useful in applied mathematics and theoretical physics, including manifolds, metrics, connections, Lie groups, spinors and bundles, preparing readers for the study of modern treatments of mechanics, gauge fields theories, relativity and gravitation. The order of presentation corresponds to that used for the relevant material in theoretical physics: the geometry of affine spaces, which is appropriate to special relativity theory, as well as to Newtonian mechanics, is developed in the first half of the book, and the geometry of manifolds, which is needed for general relativity and gauge field theory, in the second half. Analysis is included not for its own sake, but only where it illuminates geometrical ideas. The style is informal and clear yet rigorous; each chapter ends with a summary of important concepts and results. In addition there are over 650 exercises, making this a book which is valuable as a text for advanced undergraduate and postgraduate students.
目次
- The background: vector calculus
- 1. Affine spaces
- 2. Curves, functions and derivatives
- 3. Vector fields and flows
- 4. Volumes and subspaces: exterior algebra
- 5. Calculus of forms
- 6. Frobenius's theorem
- 7. Metrics on affine spaces
- 8. Isometrics
- 9. Geometry of surfaces
- 10. Manifolds
- 11. Connections
- 12. Lie groups
- 13. The tangent and cotangent bundles
- 14. Fibre bundles
- 15. Connections revisited.
「Nielsen BookData」 より