Ergodic theory and differentiable dynamics

書誌事項

Ergodic theory and differentiable dynamics

Ricardo Mañé ; translated from the Portuguese by Silvio Levy

(Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, Bd. 8)

Springer-Verlag, c1987

  • : us
  • : gw
  • : pbk.

タイトル別名

Introdução à teoria ergódica

大学図書館所蔵 件 / 80

この図書・雑誌をさがす

注記

Translation of: Introdução à teoria ergódica

"With 32 figures"

Bibliography: p. [305]-308

Includes index

内容説明・目次

巻冊次

: gw ISBN 9783540152781

内容説明

This version differs from the Portuguese edition only in a few additions and many minor corrections. Naturally, this edition raised the question of whether to use the opportunity to introduce major additions. In a book like this, ending in the heart of a rich research field, there are always further topics that should arguably be included. Subjects like geodesic flows or the role of Hausdorff dimension in con- temporary ergodic theory are two of the most tempting gaps to fill. However, I let it stand with practically the same boundaries as the original version, still believing these adequately fulfill its goal of presenting the basic knowledge required to approach the research area of Differentiable Ergodic Theory. I wish to thank Dr. Levy for the excellent translation and several of the correc- tions mentioned above. Rio de Janeiro, January 1987 Ricardo Mane Introduction This book is an introduction to ergodic theory, with emphasis on its relationship with the theory of differentiable dynamical systems, which is sometimes called differentiable ergodic theory. Chapter 0, a quick review of measure theory, is included as a reference. Proofs are omitted, except for some results on derivatives with respect to sequences of partitions, which are not generally found in standard texts on measure and integration theory and tend to be lost within a much wider framework in more advanced texts.

目次

0. Measure Theory.- 1. Measures.- 2. Measurable Maps.- 3. Integrable Functions.- 4. Differentiation and Integration.- 5. Partitions and Derivatives.- I. Measure-Preserving Maps.- 1. Introduction.- 2. The Poincare Recurrence Theorem.- 3. Volume-Preserving Diffeomorphisms and Flows.- 4. First Integrals.- 5. Hamiltonians.- 6. Continued Fractions.- 7. Topological Groups, Lie Groups, Haar Measure.- 8. Invariant Measures.- 9. Uniquely Ergodic Maps.- 10. Shifts: the Probabilistic Viewpoint.- 11. Shifts: the Topological Viewpoint.- 12. Equivalent Maps.- II. Ergodicity.- 1. Birkhoff's Theorem.- 2. Ergodicity.- 3. Ergodicity of Homomorphisms and Translations of the Torus.- 4. More Examples of Ergodic Maps.- 5. The Theorem of Kolmogorov-Arnold-Moser.- 6. Ergodic Decomposition of Invariant Measures.- 7. Furstenberg's Example.- 8. Mixing Automorphisms and Lebesgue Automorphisms.- 9. Spectral Theory.- 10. Gaussian Shifts.- 11. Kolmogorov Automorphisms.- 12. Mixing and Ergodic Markov Shifts.- III. Expanding Maps and Anosov Diffeomorphisms.- 1. Expanding Maps.- 2. Anosov Diffeomorphisms.- 3. Absolute Continuity of the Stable Foliation.- IV. Entropy.- 1. Introduction.- 2. Proof of the Shannon-McMillan-Breiman Theorem.- 3. Entropy.- 4. The Kolmogorov-Sinai Theorem.- 5. Entropy of Expanding Maps.- 6. The Parry Measure.- 7. Topological Entropy.- 8. The Variational Property of Entropy.- 9. Hyperbolic Homeomorphisms.- 10. Lyapunov Exponents. The Theorems of Oseledec and Pesin.- 11. Proof of Oseledec's Theorem.- 12. Proof of Ruelle's Inequality.- 13. Proof of Pesin's Formula.- 14. Entropy of Anosov Diffeomorphisms.- 15. Hyperbolic Measures. Katok's Theorem.- 16. The Brin-Katok Local Entropy Formula.- Notation Index.
巻冊次

: pbk. ISBN 9783642703379

内容説明

This version differs from the Portuguese edition only in a few additions and many minor corrections. Naturally, this edition raised the question of whether to use the opportunity to introduce major additions. In a book like this, ending in the heart of a rich research field, there are always further topics that should arguably be included. Subjects like geodesic flows or the role of Hausdorff dimension in con temporary ergodic theory are two of the most tempting gaps to fill. However, I let it stand with practically the same boundaries as the original version, still believing these adequately fulfill its goal of presenting the basic knowledge required to approach the research area of Differentiable Ergodic Theory. I wish to thank Dr. Levy for the excellent translation and several of the correc tions mentioned above. Rio de Janeiro, January 1987 Ricardo Mane Introduction This book is an introduction to ergodic theory, with emphasis on its relationship with the theory of differentiable dynamical systems, which is sometimes called differentiable ergodic theory. Chapter 0, a quick review of measure theory, is included as a reference. Proofs are omitted, except for some results on derivatives with respect to sequences of partitions, which are not generally found in standard texts on measure and integration theory and tend to be lost within a much wider framework in more advanced texts.

目次

0. Measure Theory.- 1. Measures.- 2. Measurable Maps.- 3. Integrable Functions.- 4. Differentiation and Integration.- 5. Partitions and Derivatives.- I. Measure-Preserving Maps.- 1. Introduction.- 2. The Poincare Recurrence Theorem.- 3. Volume-Preserving Diffeomorphisms and Flows.- 4. First Integrals.- 5. Hamiltonians.- 6. Continued Fractions.- 7. Topological Groups, Lie Groups, Haar Measure.- 8. Invariant Measures.- 9. Uniquely Ergodic Maps.- 10. Shifts: the Probabilistic Viewpoint.- 11. Shifts: the Topological Viewpoint.- 12. Equivalent Maps.- II. Ergodicity.- 1. Birkhoff's Theorem.- 2. Ergodicity.- 3. Ergodicity of Homomorphisms and Translations of the Torus.- 4. More Examples of Ergodic Maps.- 5. The Theorem of Kolmogorov-Arnold-Moser.- 6. Ergodic Decomposition of Invariant Measures.- 7. Furstenberg's Example.- 8. Mixing Automorphisms and Lebesgue Automorphisms.- 9. Spectral Theory.- 10. Gaussian Shifts.- 11. Kolmogorov Automorphisms.- 12. Mixing and Ergodic Markov Shifts.- III. Expanding Maps and Anosov Diffeomorphisms.- 1. Expanding Maps.- 2. Anosov Diffeomorphisms.- 3. Absolute Continuity of the Stable Foliation.- IV. Entropy.- 1. Introduction.- 2. Proof of the Shannon-McMillan-Breiman Theorem.- 3. Entropy.- 4. The Kolmogorov-Sinai Theorem.- 5. Entropy of Expanding Maps.- 6. The Parry Measure.- 7. Topological Entropy.- 8. The Variational Property of Entropy.- 9. Hyperbolic Homeomorphisms.- 10. Lyapunov Exponents. The Theorems of Oseledec and Pesin.- 11. Proof of Oseledec's Theorem.- 12. Proof of Ruelle's Inequality.- 13. Proof of Pesin's Formula.- 14. Entropy of Anosov Diffeomorphisms.- 15. Hyperbolic Measures. Katok's Theorem.- 16. The Brin-Katok Local Entropy Formula.- Notation Index.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

  • NII書誌ID(NCID)
    BA00503377
  • ISBN
    • 0387152784
    • 3540152784
    • 9783642703379
  • LCCN
    86025983
  • 出版国コード
    gw
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 原本言語コード
    por
  • 出版地
    Berlin ; Tokyo
  • ページ数/冊数
    xii, 317 p.
  • 大きさ
    25 cm
  • 分類
  • 件名
  • 親書誌ID
ページトップへ