- Volume
-
2 : Berlin ISBN 9783540022954
Table of Contents
Durchgang langsamer Elektronen und Ionen durch Gase.- 1. Einfuhrung und Abgrenzung.- A. Elektronen.- 2. Historische Vorbemerkungen.- I. Summarische Erfassung aller Stossvorgange.- 3. Zum Begriff des Stoss- bzw. Wirkungsquerschnitts.- 4. Absorptionsgesetz in Gasen und Deutung des Absorptionskoeffizienten.- 5. Experimentieren mit langsamen Elektronen.- 6. Grundsatzliches zur quantitativen Messung des Wirkungsquerschnitts.- 7. Die magnetische Kreisfuhrung nach Ramsauer.- 8. Querschnittsmessungen nach Diffusionsmethoden.- 9. Ergebnisse der Querschnittsmessungen.- II. Untersuchung einzelner Stossvorgange.- 10. Gesamtwirkung und Einzelvorgange.- 11. Erste Arbeiten uber einzelne Stoss Vorgange.- 12. Die Winkelverteilung gestreuter Elektronen (Messmethoden).- 13. Die Winkelverteilung elastisch gestreuter Elektronen (Messergebnisse).- 14. Theoretische Beschreibung.- B. Ionen.- 15. Einige historische und grundsatzliche Vorbemerkungen.- 16. Herstellung und Nachweis von Ionenstrahlen.- I. Summarische Erfassung aller Stossvorgange.- 17. Methoden zur Messung des Gesamtquerschnitts.- 18. Ergebnisse der Messungen des Gesamtquerschnitts.- II. Untersuchung einzelner Stossvorgange.- a) Elastische Streuung.- 19. Messmethoden.- 20. Energie- und Winkelverteilung elastisch gestreuter Ionen.- 21. Querschnitte fur elastische Streuung.- b) Umladung.- 22. Messmethoden.- 23. Ubersicht uber das gesamte Versuchsmaterial zum Umladungsquerschnitt.- 24. Der Verlauf der Qu-Kurven.- 25. Der Einfluss der Resonanzverstimmung.- 26. Diskrepanzen bei kleiner Ionenenergie.- 27. Untersuchungen an negativen und mehrfach geladenen Ionen.- The Passage of Fast Electrons Through Matter.- A. Introduction.- 1. Introduction and short bibliography.- B. Collisions with free electrons.- 2. Simple classical theory.- 3. Quantum mechanical theory for electron-electron collisions.- 4. Measurements of electron-electron collisions.- 5. Quantum mechanical theory for positron-electron collisions.- 6. Measurements of positron-electron collisions.- C. Stopping power of matter for electrons.- 7. Semi-classical theory.- 8. Relativistic theory.- 9. The average excication potential.- 10. The Cerenkov effect.- 11. The density effect.- D. Collisions with the conduction electron plasma.- 12. The frequency of the conduction electron plasma.- 13. The stopping power due to conduction electrons.- 14. Screening effects in the plasma.- 15. The angular distribution of electrons scattered by the plasma.- 16. Discrete energy losses in a reflected electron beam.- 17. Discrete energy losses in a transmitted electron beam.- 18. Comparison of discrete energy losses with the plasma theory.- E. Distribution of energy losses-straggling.- 19. General theory.- 20. Path length distribution due to scattering.- 21. Measurement of the most probable energy loss.- 22. Experimental distribution of energy losses for primary energy less than 2 Mev.- 23. Experimental distributions at higher energies.- F. Nuclear scattering.- 24. The theory of single nuclear scattering.- 25. Experimental measurements of single nuclear scattering.- 26. The simple theory of multiple nuclear scattering.- 27. The transition from single to multiple scattering-theory of plural scattering.- 28. Measurements of plural and multiple scattering.- G. Electron penetration through thick layers.- 29. Spectral distribution of electron flux in a medium.- 30. Electron diffusion theory.- 31. Measurement of ionization at various depths.- 32. Backscattering.- 33. Experimental measurement of range (range energy relations).- Acknowledgments.- Positronium.- A. Theorie der Vernichtung von Positronium.- 1. Auswahlregeln.- 2. Mittlere Lebensdauer des Parapositroniums.- 3. Mittlere Lebensdauer des Orthopositroniums.- 4. Verhaltnis zwischen den Wirkungsquerschnitten der Drei- und Zweiquantenvernichtungen.- 5. Spektrum der Vernichtungsstrahlung.- 6. Winkel und Polarisationskorrelationen der Dreiquantenstrahlung.- B. Bildung und Stabilitat von Positronium.- 7. Bildung von Positronium in Gasen.- 8. Stabilitat von Positronium in Gasen.- C. Nachweis von Positronium in Gasen.- 9. Entdeckung von Positronium.- 10. Nachweismethoden fur Positronium.- 11. Spektrale Verteilung der Dreiquantenvernichtung des Orthopositroniums.- 12. Experimente uber Bildung und Stabilitat des Positroniums.- D. Feinstruktur und Zeeman-Effekt des Positroniums.- 13. Feinstruktur.- 14. Zeeman-Effekt.- 15. Loschung im Magnetfeld.- 16. Messungen am Zeeman-Effekt.- E. Bildung von Positronium in Flussigkeiten und festen Korpern.- 17. Bremsung der Positronen in Flussigkeiten und festen Korpern.- 18. Mittlere Lebensdauer.- 19. Einfluss der Temperatur.- 20. Winkelkorrelation der Zweiquanten-Vernichtungsstrahlung.- Literatur.- X-ray Production by Heavy Charged Particles.- A. Inner shell ionization.- 1. Introduction and early experiments.- 2. Theoretical discussion.- 3. Theoretical discussion: First approximation.- 4. Evaluation of the cross section. Screening.- 5. Excitation of characteristic x-rays: Experimental.- 6. Experimental cross sections and conclusions.- 7. Emission of "stopping electrons".- B. Continuous radiation from heavy charged particles.- 8. Experiments and theory.- The Energy Loss of Charged Particles in Matter.- 1. Introduction.- 2. Stopping cross sections.- 3. Ranges.- Appendix A. Conversion factors for loss measurements.- Appendix B. Approximate methods for estimating the stopping cross section.- References.- Compton Effect.- A. Discovery of the Compton shift and associated phenomena.- 1. Thomson scattering.- 2. Quality of scattered radiation.- 3. Experimental and theoretical results by A. H. Compton.- 4. Recoil electrons: simultaneity and conservation.- 5. Polarization of scattered radiation.- 6. Cross section according to classical electrodynamics.- B. Conservation laws. Energy and angle relationships.- 7. Conservation of energy and momentum.- 8. The Compton shift. Energy of scattered photons.- 9. Interdepence of angles for the scattered photon and recoil electron.- 10. Energy of the Compton recoil electrons.- C. Klein-Nishina cross sections for polarized radiation.- 11. Relativistic quantum-mechanical model.- 12. Collision differential cross section for plane polarized radiation.- 13. Scattering differential cross section for plane polarized radiation.- 14. Collision differential cross section for arbitrarily polarized radiation and aligned electrons.- D. Klein-Nishina cross sections for unpolarized radiation.- 15. Collision differential cross section.- 16. Angular distribution of scattered photons.- 17. Angular distribution of Compton recoil electrons.- 18. Collision cross section integral between arbitrary angular limits.- 19. Scattering differential cross section.- 20. Scattering cross section integral between arbitrary angular limits.- 21. Bipartition angles.- 22. Average collision cross section.- 23. Average scattering cross section.- 24. Average absorption cross section.- 25. Average energy per Compton recoil electron.- 26. Energy distribution of Compton recoil electrons and scattered photons.- 27. Radiative corrections, and the double Compton effect.- E. Compton attenuation coefficients.- 28. Compton linear attenuation coefficients.- 29. Compton mass-attenuation coefficients.- F. Compton absorption coefficients.- 30. Energy absorption by Compton recoil electrons.- G. Compton scattering by bound electrons.- 31. Width of the Compton shifted line.- 32. Incoherent scattering function.- 33. Coherent scattering.- H. Compton scattering by magnetically oriented electrons.- 34. Differential collision cross section for magnetically oriented electrons.- 35. Average collision cross section for magnetically oriented electrons.- 36. Attenuation of unpolarized radiation by magnetically oriented electrons.- General references.- Sachverzeichnis (Deutsch-Englisch).- Subject Index (English-German).
- Volume
-
1 : Berlin ISBN 9783540113133
Description
This volume deals with specific fields of atomic physics: photoionization, photoelectron spectroscopy and the Auger effect. Here a vast amount of experimental and theoretical results has emerged during the last two decades, indeed in the case of photoelectron spectroscopy the field itself has been developed only since the mid-fifties. Experimentally, this was mostly due to the development of high resolution electron spectrometers and the availability or the development of new radiation sources (e. g. synchrotron radiation, reso- nance radiation of rare gas discharge lamps, monochromatized characteristic X-radiation). Here, not only first-order effects with high precision but, even more important, also second-order effects caused by electron correlation were studied. Parallel to the development of new experimental methods, an impor- tant step beyond the independent-particle model was made on the theoretical side through the development of various approaches to treat electron cor- relation effects seen in photoionization and electron spectroscopy.
Volume 31 is divided into the following chapters: Theory of Photoion- ization, Atomic Photoionization, Photoelectron Spectroscopy, and Theory of the Auger Effect. A chapter on Auger Electron Spectrometry could not be includ- ed since the manuscript was not sent in due time. Freiburg, September W. MEHLHORN 1982 Contents Theory of Atomic Photoionization. By Professor Dr. ANTHONY F. STARACE, Behlen Laboratory of Physics, Department of Physics and Astronomy, The University of Nebraska, Lincoln, NE 68588 (USA). (With 40 Figures) 1. Introduction I. General considerations 5 2. Introduction 5 3. Derivation of the general cross-section formula 6 4. The final-state wave function ...
Table of Contents
Theory of Atomic Photoionization.- 1. Introduction.- I. General considerations.- 2. Introduction.- 3. Derivation of the general cross-section formula.- 4. The final-state wave function.- 5. Alternative expressions for the transition matrix element.- 6. Cross-section formulae in terms of the final-state channel wave functions.- 7. The angular distribution asymmetry parameter.- 8. The atomic oscillator strength.- 9. Limiting cases and approximations to the general formulae.- II. The central potential model and its predictions.- 10. The central potential model.- 11. Predictions for the high-energy behavior of the cross section.- 12. Predictions for the near-threshold behavior of the cross section.- 13. Bibliographic note on central potential model calculations.- III. General methods for including electron correlation.- a) Whole-space correlation theories.- 14. Introduction.- 15. Configuration interaction in the continuum.- 16. Procedures derived from a variational principle.- 17. Many-body perturbation theory.- 18. The random-phase approximation.- b) Partitioned-space correlation theories.- 19. Introduction.- 20. Quantum defect theory.- 21. The R matrix theory.- 22. Discrete basis-set methods.- IV. Specialized topics in the theory of photoionization.- 23. Photoelectron angular distributions.- 24. Multiple photoionization.- Atomic Photoionization.- 1. Introduction.- 2. Historical Review.- I. Absorption of radiation.- 3. General concepts.- 4. Error analysis.- II. Experimental techniques.- 5. Light sources.- ?) DC glow discharge.- ?) Spark discharge.- ?) Synchrotron radiation.- 6. Monochromators and spectrographs.- 7. Absorption and photoionization cells.- ?) Double beam.- ?) Split beam.- ?) Double ion chamber.- ?) Heat pipes.- ?) Atomic beams.- 8. Branching-ratio studies.- ?) Mass spectrometers.- ?) Electron energy analyzers.- ?) Ion chambers.- ?) Fluorescence spectrometry.- 9. Electron-impact "photoionization".- III. Photoionization measurements.- 10. Total photoionization cross sections.- ?) The rare gases.- ?) The alkali metals.- ?) Cross sections of some miscellaneous atoms.- ?) Ionic-and excited-state atoms.- 11. Partial photoionization cross sections.- ?) Ionization from specific orbitals.- ?) Multiple ionization.- ?) Angular distribution of photoelectrons.- 12. Summary of atoms studied and the future.- General references.- Photoelectron Spectroscopy.- I. Introduction.- 1. Scope and abstract.- 2. Historical background.- II. Experimental procedures and general features of photoelectron spectra.- 3. Photon sources.- ?) Introduction.- ?) X-ray sources. Monochromatization.- ?) UV-source. Filtering and polarization.- ?) Synchrotron radition.- 4. Electron energy analyzers and detectors.- ?) Introduction.- ?) Dispersive analyzers.- ?) Nondispersive analyzers.- ?) Preretardation in dispersive analyzers.- ?) Electron detection.- 5. Sample preparation procedures.- ?) Vacuum requirements.- ?) Gases.- ?) Liquids.- ?) Solids and surfaces.- 6. General features of photoelectron spectra.- ?) Introduction.- ?) Calibration of photoelectron spectra.- ?) Intensities of photoelectron lines.- ?) Widths of photoelectron lines.- 7. Theoretical models for photoelectron spectra.- ?) Koopmans' theorem and.?SCF binding energies.- ?) Correlation in initial and final states.- ?) Intensities of one-electron and multi-electron transitions.- ?) Vibrational excitations, Franck-Condon principle.- III. Atomic photoelectron spectra.- 8. Core electron ionization.- ?) The Ne1s spectrum.- ?) The Xe4s, 4p spectrum.- 9. Valence electron ionization.- ?) Inner valence ionization.- ?) Outer valence ionization.- 10. Tables of electron binding energies and relative multiplet intensities for atoms.- ?) Atomic binding energies.- ?) Relative multiplet intensities for ionization of open shell atoms.- IV. Core level studies in molecules and condensed matter.- 11. Chemical shifts of core electron lines.- ?) Introduction.- ?) Basic model considerations.- ?) Orbital energy shifts.- ?) Ground state potential models (GPM).- ?) Core shift models including relaxation.- ?) Relations to other experimental data. The thermodynamic model.- 12. Multiple excitations in core ionization of molecules and solids.- ?) Molecular core electron spectra.- ?) Many-electron effects in solid core photoelectron spectra.- ?) Vibrational excitations in core electron spectra.- ?) Core line multiplet structure in molecules and solids.- 13. Core electron spectra of molecules on metal surfaces. ESCA diffraction.- V. Valence level studies in molecules and condensed matter.- 14. General features of molecular valence electron spectra.- ?) Introduction.- ?) Electron binding energies of main bands.- ?) Intensities of main bands.- ?) Satellite structure.- ?) Spin-orbit and Jahn-Teller interactions.- 15. Vibrational and rotational excitations in valence electron spectra.- ?) Vibrational selection rules.- ?) Hot bands.- ?) Qualitative correspondence between vibrational structure and orbital shapes.- ?) Calculation of vibrational structure.- ?) Rotational excitations.- 16. Angular distributions of molecular valence photoelectrons.- ?) General aspects.- ?) Photoelectron energy dependence of the asymmetry parameter.- ?) Vibrational state dependence of the asymmetry parameter.- ?) Rotational state dependence of the asymmetry parameter.- ?) Asymmetry parameters for interpretation of valence spectra.- 17. Molecular structure and bonding.- ?) MO methods for characterization of spectra and correlation with chemical reaction parameters.- ?) Biological molecules.- ?) Molecular conformations, equilibrium systems and chemical reactions.- ?) Short-lived species.- e) Ionically bonded molecules.- ?) Negative ions.- 18. Valence electron studies of single crystals and adsorbates.- ?) Selection rules in photoionization from solids.- ?) Two-dimensional band structures.- ?) Three-dimensional band structures.- ?) Angular studies of adsorbates.- 19. Density of states structure from photoelectron spectra.- ?) Solid valence photoelectron spectra in the high photon energy limit.- ?) Metal valence bands.- ?) Alloy valence bands.- ?) Formation of valence bands in extended systems.- Appendix: Graph of electron binding energies for the elements.- Theory of the Auger Effect.- I. A nonrelativistic scattering approach to the decay of inner-shell vacancy states.- 1. Boundary conditions.- 2. Nonresonant multichannel scattering.- 3. Resonant scattering including channel interaction.- 4. Autoionization and the Auger effect as resonance scattering. The concept of nonradiative transitions.- 5. Spontaneous photon emission as resonance scattering.- 6. Final-state photon-electron interactions and additivity of nonradiative and radiative widths.- II. Nonrelativistic theory of nonradiative transitions.- 7. Central field model and classification of nonradiative transitions.- 8. Many-electron theory and frozen-core approximation.- ?) LS- coupling.- ?) Intermediate coupling and configuration interaction.- ?) jj coupling.- ?) Variational principle and Hartree-Fock method.- ?) Electrons and holes.- 9. Probability of nonradiative transitions.- ?) LS- and jj-coupling limit.- ?) Intermediate coupling and configuration interaction.- ?) The open-shell case.- ?) Relationship between the intensity and probability.- 10. Beyond the independent-electron frozen-core approximation.- ?) Relaxation.- ?) Interchannel interaction.- ?) Perturbation approaches to the Auger effect.- III. Relativistic theory of nonradiative transitions.- 11. Basic Hamiltonian and the electron-electron interaction.- 12. A relativistic nonradiative transition probability.- 13. Intermediate coupling.- IV. Angular distribution of Auger electrons.- 14. General considerations.- ?) Photoionization.- ?) Ionization by high-energy electron impact.- 15. Auger electron angular distributions.- ?) Noncoincidence experiments.- ?) Some features of noncoincidence angular distributions.- ?) Coincidence experiments.- V. The calculation of nonradiative transition energies.- 16. General aspects of hole-state and binding energies.- ?) The level shift.- ?) Variational collapse.- ?) Perturbation analysis of binding energies.- ?) Relativistic and quantum-electrodynamical effects.- ?) Correlation.- 17. Semiempirical treatments.- 18. Ab initio calculations.- ?) Self-consistent-field methods.- ?) Correlation effects.- VI. The calculation of nonradiative transition amplitudes.- 19. Computation of radial wave functions.- ?) The nonrelativistic treatment.- ?) Some approximate potential methods.- ?) The relativistic treatment.- ?) Some practical considerations.- 20. On factors affecting the nonradiative transition amplitudes.- ?) Relativistic effects.- ?) The choice of the local potential and kinetic energy.- ?) The effect of bound orbital basis set and relaxation.- ?) Correlation effects.- Appendices.- A. Some formulae for the treatment of the continuous spectrum.- B. Relationship between the configuration interaction and the projection operator approach in the theory of resonances.- C. A derivation of the Fano profile from scattering theory.- D. Equivalence of electron and hole wave functions with respect to symmetry.- E. Conversion and normalization factors.- General references.
by "Nielsen BookData"