Time-series analysis : a comprehensive introduction for social scientists

書誌事項

Time-series analysis : a comprehensive introduction for social scientists

John M. Gottman

Cambridge University Press, 1981

大学図書館所蔵 件 / 51

この図書・雑誌をさがす

注記

Bibliography: p. 393-396

Includes index

内容説明・目次

内容説明

Since the 1970s social scientists and scientists in a variety of fields - psychology, sociology, education, psychiatry, economics and engineering - have been interested in problems that require the statistical analysis of data over time and there has been in effect a conceptual revolution in ways of thinking about pattern and regularity. This book is a comprehensive introduction to all the major time-series techniques, both time-domain and frequency-domain. It includes work on linear models that simplify the solution of univariate and multivariate problems. The author begins with a non-mathematical overview: throughout, he provides easy-to-understand, fully worked examples drawn from real studies in psychology and sociology. Other, less comprehensive, books on time-series analysis require calculus: this presupposes only a standard introductory statistics course covering analysis of variance and regression. The chapters are short, designed to build concepts (and the reader's confidence) one step at a time. Many illustrations aid visual, intuitive understanding. Without compromising mathematical rigour, the author keeps in mind the reader who does no have an easy time with mathematics: the result is a readily accessible and practical text.

目次

  • Preface
  • Part I. Overview: 1. The search for hidden structures
  • 2. The ubiquitous cycles
  • 3. How Slutzky created order from chaos
  • 4 Forecasting: Yule's autoregressive models
  • 5. Into the black box with white light
  • 6. Experimentation and change
  • Part II. Time-series models: 7. Models and the problem of correlated data
  • 8. An introduction to time-series models: stationarity
  • 9. What if the data are not stationary?
  • Part III. Deterministic and nondeterministic components: 10. Moving-average models
  • 11. Autoregressive models
  • 12. The complex behaviour of the second-order autoregressive process
  • 13. The partial autocorrelation function: completing the duality
  • 14. The duality of MA and AR processes
  • Part IV. Stationary frequency-domain models: 15. The spectral density function
  • 16. The periodogram
  • 17. Spectral windows and window carpentry
  • 18. Explanation of the Slutzky effect
  • Part V. Estimation in the time domain: 19. AR model fitting and estimation
  • 20. Box-Jenkins model fitting: the ARIMA models
  • 21. Forecasting
  • 22. Model fitting: worked example
  • Part VI. Bivariate time-series analysis: 23. Bivariate frequency-domain analysis
  • 24. Bivariate frequency example: mother-infant play
  • 25. Bivariate time-domain analysis
  • Part VII. Other Techniques: 26. The interrupted time-series experiment
  • 27. Multivariate approaches
  • Notes
  • References
  • Index.

「Nielsen BookData」 より

詳細情報

  • NII書誌ID(NCID)
    BA03705323
  • ISBN
    • 0521235979
  • LCCN
    80025644
  • 出版国コード
    uk
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    Cambridge ; New York
  • ページ数/冊数
    xvi, 400 p.
  • 大きさ
    24 cm
  • 分類
  • 件名
ページトップへ