Hardy classes on infinitely connected Riemann surfaces
Author(s)
Bibliographic Information
Hardy classes on infinitely connected Riemann surfaces
(Lecture notes in mathematics, 1027)
Springer-Verlag, 1983
- : gw
- : us
Available at / 71 libraries
-
Library & Science Information Center, Osaka Prefecture University
: gwNDC8:410.8||||10007290673
-
Library, Research Institute for Mathematical Sciences, Kyoto University数研
L/N||LNM||10278312059S
-
Hokkaido University, Library, Graduate School of Science, Faculty of Science and School of Science研究室
: gw510/L4972021211376
-
No Libraries matched.
- Remove all filters.
Note
Bibliography: p. [272]-275
Includes indexes
Description and Table of Contents
Table of Contents
Theory of Riemann surfaces: A quick review.- Multiplicative analytic functions.- Martin compactification.- Hardy classes.- Riemann surfaces of Parreau-Widom type.- Green lines.- Cauchy theorems.- Shift-invariant subspaces.- Characterization of surfaces of Parreau-Widom type.- Examples of surfaces of Parreau-Widom type.- Classification of plane regions.
by "Nielsen BookData"