Topics in noncommutative geometry

書誌事項

Topics in noncommutative geometry

Yuri I. Manin

(M.B. Porter lectures)

Princeton University Press, c1991

大学図書館所蔵 件 / 82

この図書・雑誌をさがす

注記

Bibliography: p. [157]-163

Includes index

Author's lectures given as the Milton Porter Lectures at Rice University in the fall of 1989

内容説明・目次

内容説明

There is a well-known correspondence between the objects of algebra and geometry: a space gives rise to a function algebra; a vector bundle over the space corresponds to a projective module over this algebra; cohomology can be read off the de Rham complex; and so on. In this book Yuri Manin addresses a variety of instances in which the application of commutative algebra cannot be used to describe geometric objects, emphasizing the recent upsurge of activity in studying noncommutative rings as if they were function rings on "noncommutative spaces." Manin begins by summarizing and giving examples of some of the ideas that led to the new concepts of noncommutative geometry, such as Connes' noncommutative de Rham complex, supergeometry, and quantum groups. He then discusses supersymmetric algebraic curves that arose in connection with superstring theory; examines superhomogeneous spaces, their Schubert cells, and superanalogues of Weyl groups; and provides an introduction to quantum groups. This book is intended for mathematicians and physicists with some background in Lie groups and complex geometry. Originally published in 1991. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

ページトップへ