Elliptic operators and Lie groups

書誌事項

Elliptic operators and Lie groups

Derek W. Robinson

(Oxford mathematical monographs)

Clarendon Press, 1991

大学図書館所蔵 件 / 43

この図書・雑誌をさがす

注記

Bibliography: p. [542]-550

内容説明・目次

内容説明

Elliptic operators arise naturally in several different mathematical settings, notably in the representation theory of Lie groups, the study of evolution equations, and the examination of Riemannian manifolds. This book develops the basic theory of elliptic operators on Lie groups and thereby extends the conventional theory of parabolic evolution equations to a natural non-commutative context. In order to achieve this goal, the author presents a synthesis of ideas from partial differential equations, harmonic analysis, functional analysis, and the theory of Lie groups. He begins by discussing the abstract theory of general operators with complex coefficients before concentrating on the central case of second-order operators with real coefficients. A full discussion of second-order subellilptic operators is also given. Prerequisites are a familiarity with basic semigroup theory, the elementary theory of Lie groups, and a firm grounding in functional analysis as might be gained from the first year of a graduate course.

目次

  • Introduction
  • Elliptic operators
  • Analytic elements
  • Semigroup kernels
  • Second-order operators
  • Elliptic operators with variable coefficients
  • Appendices.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

  • NII書誌ID(NCID)
    BA13097723
  • ISBN
    • 0198535910
  • 出版国コード
    uk
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    Oxford
  • ページ数/冊数
    xi, 558 p.
  • 大きさ
    24 cm
  • 分類
  • 件名
  • 親書誌ID
ページトップへ