Bibliographic Information

Hydrogen in crystalline semiconductors

S.J. Pearton, J.W. Corbett, M. Stavola

(Springer series in materials science, 16)

Springer-Verlag, c1992

  • : ger : pbk

Available at  / 44 libraries

Search this Book/Journal

Note

Bibliography: p. 331-360

Includes index

Description and Table of Contents

Volume

ISBN 9783540539230

Description

This monograph of hydrogen in crystalline semiconductors provides a comprehensive treatment of the properties of hydrogen as an impurity, beginning at an introductory level. It describes the states and binding sites that hydrogen assumes in the lattice, the passivation of shallow and deep impurities, the properties of hydrogen-related defects in semiconductors, the diffusivity of the various forms of hydrogen, and the effects of hydrogen on the mechanical properties of semiconductors. Emphasis is placed on the ways in which hydrogen is incorporated during crystal growth and device fabrication, an area of great practical importance.

Table of Contents

1. Introduction.- 2. Hydrogen Incorporation in Crystalline Semiconductors.- 2.1 Techniques for Hydrogen Incorporation in Semiconductors.- 2.1.1 Hydrogen Plasma Exposure.- 2.1.2 Hydrogen Implantation.- 2.2 Survey of the Configurations of Hydrogen in Semiconductors.- 2.2.1 Silicon.- 2.2.2 Germanium.- 2.2.3 Gallium-Arsenide and Other Compound Semiconductors.- 3. Passivation of Deep Levels by Hydrogen.- 3.1 Deep-Level Passivation in Silicon.- 3.1.1 Metallic Impurities.- 3.1.2 Chalcogenides.- 3.1.3 Oxygen-Related Thermal Donors.- 3.1.4 Process-Related Defects.- 3.1.5 Crystalline Defects.- 3.1.6 Thermal Stability of Passivation.- 3.1.7 Prehydrogenation.- 3.1.8 Models for Deep-Level Passivation.- 3.2 Passivation of Defects in Gallium Arsenide.- 3.3 Aluminum Gallium Arsenide.- 3.4 Gallium Phosphide.- 3.5 CdHgTe, Zn3P2.- 3.6 Germanium.- 4. Shallow Impurity Passivation by Atomic Hydrogen.- 4.1 Silicon.- 4.1.1 Silicon Acceptors.- 4.1.2 Donors.- 4.2 Gallium Arsenide.- 4.2.1 Donors.- 4.2.2 Charge States.- 4.2.3 Acceptors.- 4.3 AlGaAs.- 4.4 CdTe and ZnTe.- 4.5 Gallium Phosphide.- 4.6 Germanium.- 4.7 Indium Phosphide.- 4.8 BN and BP.- 4.9 Correlation with Muonium.- 5. Microscopic Properties of Hydrogen-Related Complexes in Silicon from Vibrational Spectroscopy.- 5.1 Vibrational Spectroscopy of H-Related Complexes.- 5.1.1 Local Vibrational Modes.- 5.1.2 H-Stretching Vibrations of the Acceptor-H Complexes.- 5.1.3 Local Mode of the B-H Complex and the Effect of B Isotopic Substitutions.- 5.1.4 Vibrational Spectroscopy of Donor-H Complexes in Silicon.- 5.1.5 IR Studies of Lattice Defects Decorated with Hydrogen.- 5.2 Uniaxial Stress Studies of H-Related Complexes.- 5.2.1 Uniaxial Stress and Defect Symmetry.- 5.2.2 Vibrational Spectra of the B-H Complex Under Stress.- 5.2.3 Stress Studies of Donor-H Complexes.- 5.2.4 Uniaxial Stress Studies of Proton-Implanted Silicon.- 5.3 Hydrogen Motion in the B-H Complex.- 5.3.1 Kinetics of Defect Motion.- 5.3.2 IR Studies of the Reorientation of the B-H Complex.- 5.3.3 Raman Studies of the Reorientation of the B-H Complex.- 5.3.4 Tunneling vs Classical Hydrogen Motion.- 5.4 Conclusion.- 6. The Microscopic Characteristics of Impurity-Hydrogen Complexes in III-V Semiconductors.- 6.1 Acceptor-H Complexes.- 6.1.1 H Complexed with Acceptors on the Group-Ill Sublattice.- 6.1.2 H Complexed with Acceptors on the Group-V Sublattice.- 6.2 Donor-H Complexes.- 6.2.1 GaAs:SiGa-H.- 6.2.2 GaAs:SnGa-H.- 6.2.3 AlGaAs:Si-H.- 6.2.4 Donor Dependence of the Vibrational Frequencies.- 6.3 Unintentional Hydrogenation.- 6.4 Uniaxial Stress Studies.- 6.4.1 GaAs:Be-H.- 6.4.2 GaAs:SiGa-H.- 6.4.3 Unintentional Complexes.- 6.5 Cluster Calculations for H-Related Complexes in GaAs.- 6.5.1 Isolated H.- 6.5.2 Be-H Complexes.- 6.5.3 SiGa-H Complexes.- 6.6 Conclusion.- 7. Hydrogen, and Semiconductor Surfaces and Surface Layers.- 7.1 Etching of Silicon Surfaces by Hydrogen.- 7.2 Plasma Etching.- 7.2.1 Dry Etching of Silicon.- 7.2.2 Dry Etching of GaAs and InP.- 7.3 Implantation of Protons.- 7.3.1 Silicon.- 7.3.2 Gallium Arsenide.- 7.4 Hydrogen on Semiconductor Surfaces.- 7.4.1 Silicon Surfaces.- 7.4.2 Gallium Arsenide Surfaces.- 7.4.3 Indium Phosphide Surfaces.- 8. Hydrogen-Related Defects in Semiconductors.- 8.1 Hydrogen-Related Defects in Silicon.- 8.1.1 Electron-Irradiation of Si(H).- 8.1.2 Proton or Neutron Irradiation of Silicon.- 8.1.3 Implant-Induced Levels in Silicon.- 8.1.4 Shallow H-Related Donors in Silicon.- 8.2 Hydrogen-Related Defects in Germanium.- 8.3 Hydrogen-Related Defects in Compound Semiconductors.- 8.4 Hydrogen-Related IR Bands in Silicon.- 9. Diffusion of Hydrogen in Semiconductors.- 9.1 Diffusion of Hydrogen in Solids.- 9.2 Diffusion Equations.- 9.3 Analysis of Diffusion Profiles.- 9.3.1 Effects of Charge States.- 9.3.2 Effect of Molecule Formation.- 9.3.3 Effect of Hydrogen Trapping.- 9.3.4 Effects of Multiple Trapping.- 9.3.5 Comparison of Theory and Experiment.- 9.4 Diffusion of Hydrogen in Silicon.- 9.4.1 Early Diffusion Experiments.- 9.4.2 Experimentally Determined Diffusivities.- 9.4.3 Additional Features of Hydrogen Diffusion.- 9.4.4 Rapid Diffusion of Compensating Species During Polishing.- 9.4.5 Charge States and Hydrogen Diffusion.- 9.4.6 Theoretical Treatments of Diffusion Paths.- 9.4.7 Summary of Diffusion behavior.- 9.5 Diffusion of Hydrogen in Germanium.- 9.6 Diffusion in Gallium Arsenide.- 9.6.1 Dependence of Diffusion on Experimental Conditions.- 9.6.2 Effect of Charge on Hydrogen Diffusion.- 9.7 Diffusion of Hydrogen in Other Materials.- 9.8 Summary.- 10. Resonance Studies Pertinent to Hydrogen in Semiconductors.- 10.1 Electron Paramagnetic Resonance.- 10.1.1 Theory of Electron Paramagnetic Resonance.- 10.1.2 Experimental EPR Studies.- 10.2 Related Muon Studies.- 10.2.1 Use of Muon Spectroscopy.- 10.2.2 Comparison of Theory and Experiment.- 10.3 Perturbed Angular Correlation.- 10.3.1 Experimental PAC Studies.- 10.3.2 Role of Copper in Silicon.- 11. Prevalence of Hydrogen Incorporation and Device Applications.- 11.1 Experimental Studies of Hydrogen Incorporation.- 11.1.1 Hydrogen in Silicon Dioxide.- 11.1.2 Bias Application to Diode Structures.- 11.1.3 Injection of Hydrogen by Chemical Etching.- 11.1.4 Hydrogen Injection by Ion Bombardment.- 11.1.5 Hydrogen Injection During Metal Deposition.- 11.1.6 Wafer Polishing.- 11.1.7 Boiling in Water.- 11.1.8 Proton Implantation.- 11.1.9 Hydrogen in As-Received Wafers.- 11.2 Hydrogen Sensing with MOS Structures.- 11.3 Hydrogen in III-V Semiconductors.- 11.3.1 As-Grown Material.- 11.3.2 Annealing in Hydrogen.- 11.3.3 Ion-Beam Processing.- 11.3.4 Device Applications.- 12. Hydrogen and the Mechanical Properties of Semiconductors.- 12.1 Hydrogen Embrittlement.- 12.1.1 Reconstruction in the Presence of Hydrogen.- 12.1.2 Defect Aggregation.- 12.2 Hydrogen-Related Defects.- 12.2.1 Plasma-Induced Defects.- 12.2.2 Theoretical Treatments of Hydrogen-Induced Defects.- 12.3 m-V Semiconductors.- References.
Volume

: ger : pbk ISBN 9783540554912

Description

This monograph arose out of the recognition of the importance of hydrogen in modern semiconductor technology. Hydrogen is a component of most chemicals used in the fabrication of electronic and photonic devices, is easily incorporated into semiconductors and it is a model impurity for studying defect reactions in solids. While writing this volume we have received a good deal of encourage- ment from our colleagues at AT&T Bell Laboratories, State University of New York at Albany and Lehigh University, and from collaborators at other institutions: to them we extend our sincere appreciation. In particular we would like to thank W. e. Dautremont-Smith, J. Lopata, V. Swamina- than, K. Bergman, L. e. Synder, P. Deak, J. T. Borenstein, T. S. Shi, D. Tul- chinsky, G. G. DeLeo, W. B. Fowler, G. D. Watkins and D. Kozuch for their crucial contributions to this work. We would also like to thank Mrs. Danuta Sowinska-Kahn for her unfailing expertise in preparing much of the art- work. Finally we owe a great debt to Helmut Lotsch of Springer-Verlag for his initial suggestion to write this book and then his patient and professional guidance in seeing the project to fruition. Murray Hill, NJ S. J. Pearton Albany, NY J. w. Corbett Bethlehem, P A M. Stavola October 1991 v Contents 1. Introduction ...2. Hydrogen Incorporation in Crystalline Semiconductors 4 2. l Techniques for Hydrogen Incorporation in Semiconductors ...5 2. 1. 1 Hydrogen Plasma Exposure...5 2. l. 2 Hydrogen Implantation ...

Table of Contents

1. Introduction.- 2. Hydrogen Incorporation in Crystalline Semiconductors.- 2.1 Techniques for Hydrogen Incorporation in Semiconductors.- 2.1.1 Hydrogen Plasma Exposure.- 2.1.2 Hydrogen Implantation.- 2.2 Survey of the Configurations of Hydrogen in Semiconductors.- 2.2.1 Silicon.- 2.2.2 Germanium.- 2.2.3 Gallium-Arsenide and Other Compound Semiconductors.- 3. Passivation of Deep Levels by Hydrogen.- 3.1 Deep-Level Passivation in Silicon.- 3.1.1 Metallic Impurities.- 3.1.2 Chalcogenides.- 3.1.3 Oxygen-Related Thermal Donors.- 3.1.4 Process-Related Defects.- 3.1.5 Crystalline Defects.- 3.1.6 Thermal Stability of Passivation.- 3.1.7 Prehydrogenation.- 3.1.8 Models for Deep-Level Passivation.- 3.2 Passivation of Defects in Gallium Arsenide.- 3.3 Aluminum Gallium Arsenide.- 3.4 Gallium Phosphide.- 3.5 CdHgTe, Zn3P2.- 3.6 Germanium.- 4. Shallow Impurity Passivation by Atomic Hydrogen.- 4.1 Silicon.- 4.1.1 Silicon Acceptors.- 4.1.2 Donors.- 4.2 Gallium Arsenide.- 4.2.1 Donors.- 4.2.2 Charge States.- 4.2.3 Acceptors.- 4.3 AlGaAs.- 4.4 CdTe and ZnTe.- 4.5 Gallium Phosphide.- 4.6 Germanium.- 4.7 Indium Phosphide.- 4.8 BN and BP.- 4.9 Correlation with Muonium.- 5. Microscopic Properties of Hydrogen-Related Complexes in Silicon from Vibrational Spectroscopy.- 5.1 Vibrational Spectroscopy of H-Related Complexes.- 5.1.1 Local Vibrational Modes.- 5.1.2 H-Stretching Vibrations of the Acceptor-H Complexes.- 5.1.3 Local Mode of the B-H Complex and the Effect of B Isotopic Substitutions.- 5.1.4 Vibrational Spectroscopy of Donor-H Complexes in Silicon.- 5.1.5 IR Studies of Lattice Defects Decorated with Hydrogen.- 5.2 Uniaxial Stress Studies of H-Related Complexes.- 5.2.1 Uniaxial Stress and Defect Symmetry.- 5.2.2 Vibrational Spectra of the B-H Complex Under Stress.- 5.2.3 Stress Studies of Donor-H Complexes.- 5.2.4 Uniaxial Stress Studies of Proton-Implanted Silicon.- 5.3 Hydrogen Motion in the B-H Complex.- 5.3.1 Kinetics of Defect Motion.- 5.3.2 IR Studies of the Reorientation of the B-H Complex.- 5.3.3 Raman Studies of the Reorientation of the B-H Complex.- 5.3.4 Tunneling vs Classical Hydrogen Motion.- 5.4 Conclusion.- 6. The Microscopic Characteristics of Impurity-Hydrogen Complexes in III-V Semiconductors.- 6.1 Acceptor-H Complexes.- 6.1.1 H Complexed with Acceptors on the Group-Ill Sublattice.- 6.1.2 H Complexed with Acceptors on the Group-V Sublattice.- 6.2 Donor-H Complexes.- 6.2.1 GaAs:SiGa-H.- 6.2.2 GaAs:SnGa-H.- 6.2.3 AlGaAs:Si-H.- 6.2.4 Donor Dependence of the Vibrational Frequencies.- 6.3 Unintentional Hydrogenation.- 6.4 Uniaxial Stress Studies.- 6.4.1 GaAs:Be-H.- 6.4.2 GaAs:SiGa-H.- 6.4.3 Unintentional Complexes.- 6.5 Cluster Calculations for H-Related Complexes in GaAs.- 6.5.1 Isolated H.- 6.5.2 Be-H Complexes.- 6.5.3 SiGa-H Complexes.- 6.6 Conclusion.- 7. Hydrogen, and Semiconductor Surfaces and Surface Layers.- 7.1 Etching of Silicon Surfaces by Hydrogen.- 7.2 Plasma Etching.- 7.2.1 Dry Etching of Silicon.- 7.2.2 Dry Etching of GaAs and InP.- 7.3 Implantation of Protons.- 7.3.1 Silicon.- 7.3.2 Gallium Arsenide.- 7.4 Hydrogen on Semiconductor Surfaces.- 7.4.1 Silicon Surfaces.- 7.4.2 Gallium Arsenide Surfaces.- 7.4.3 Indium Phosphide Surfaces.- 8. Hydrogen-Related Defects in Semiconductors.- 8.1 Hydrogen-Related Defects in Silicon.- 8.1.1 Electron-Irradiation of Si(H).- 8.1.2 Proton or Neutron Irradiation of Silicon.- 8.1.3 Implant-Induced Levels in Silicon.- 8.1.4 Shallow H-Related Donors in Silicon.- 8.2 Hydrogen-Related Defects in Germanium.- 8.3 Hydrogen-Related Defects in Compound Semiconductors.- 8.4 Hydrogen-Related IR Bands in Silicon.- 9. Diffusion of Hydrogen in Semiconductors.- 9.1 Diffusion of Hydrogen in Solids.- 9.2 Diffusion Equations.- 9.3 Analysis of Diffusion Profiles.- 9.3.1 Effects of Charge States.- 9.3.2 Effect of Molecule Formation.- 9.3.3 Effect of Hydrogen Trapping.- 9.3.4 Effects of Multiple Trapping.- 9.3.5 Comparison of Theory and Experiment.- 9.4 Diffusion of Hydrogen in Silicon.- 9.4.1 Early Diffusion Experiments.- 9.4.2 Experimentally Determined Diffusivities.- 9.4.3 Additional Features of Hydrogen Diffusion.- 9.4.4 Rapid Diffusion of Compensating Species During Polishing.- 9.4.5 Charge States and Hydrogen Diffusion.- 9.4.6 Theoretical Treatments of Diffusion Paths.- 9.4.7 Summary of Diffusion behavior.- 9.5 Diffusion of Hydrogen in Germanium.- 9.6 Diffusion in Gallium Arsenide.- 9.6.1 Dependence of Diffusion on Experimental Conditions.- 9.6.2 Effect of Charge on Hydrogen Diffusion.- 9.7 Diffusion of Hydrogen in Other Materials.- 9.8 Summary.- 10. Resonance Studies Pertinent to Hydrogen in Semiconductors.- 10.1 Electron Paramagnetic Resonance.- 10.1.1 Theory of Electron Paramagnetic Resonance.- 10.1.2 Experimental EPR Studies.- 10.2 Related Muon Studies.- 10.2.1 Use of Muon Spectroscopy.- 10.2.2 Comparison of Theory and Experiment.- 10.3 Perturbed Angular Correlation.- 10.3.1 Experimental PAC Studies.- 10.3.2 Role of Copper in Silicon.- 11. Prevalence of Hydrogen Incorporation and Device Applications.- 11.1 Experimental Studies of Hydrogen Incorporation.- 11.1.1 Hydrogen in Silicon Dioxide.- 11.1.2 Bias Application to Diode Structures.- 11.1.3 Injection of Hydrogen by Chemical Etching.- 11.1.4 Hydrogen Injection by Ion Bombardment.- 11.1.5 Hydrogen Injection During Metal Deposition.- 11.1.6 Wafer Polishing.- 11.1.7 Boiling in Water.- 11.1.8 Proton Implantation.- 11.1.9 Hydrogen in As-Received Wafers.- 11.2 Hydrogen Sensing with MOS Structures.- 11.3 Hydrogen in III-V Semiconductors.- 11.3.1 As-Grown Material.- 11.3.2 Annealing in Hydrogen.- 11.3.3 Ion-Beam Processing.- 11.3.4 Device Applications.- 12. Hydrogen and the Mechanical Properties of Semiconductors.- 12.1 Hydrogen Embrittlement.- 12.1.1 Reconstruction in the Presence of Hydrogen.- 12.1.2 Defect Aggregation.- 12.2 Hydrogen-Related Defects.- 12.2.1 Plasma-Induced Defects.- 12.2.2 Theoretical Treatments of Hydrogen-Induced Defects.- 12.3 m-V Semiconductors.- References.

by "Nielsen BookData"

Related Books: 1-1 of 1

Details

Page Top