Integral and discrete transforms with applications and error analysis
著者
書誌事項
Integral and discrete transforms with applications and error analysis
(Monographs and textbooks in pure and applied mathematics, 162)
M. Dekker, c1992
大学図書館所蔵 全46件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Bibliography: p. 799-807
Includes indexes
内容説明・目次
内容説明
This reference/text desribes the basic elements of the integral, finite, and discrete transforms - emphasizing their use for solving boundary and initial value problems as well as facilitating the representations of signals and systems.;Proceeding to the final solution in the same setting of Fourier analysis without interruption, Integral and Discrete Transforms with Applications and Error Analysis: presents the background of the FFT and explains how to choose the appropriate transform for solving a boundary value problem; discusses modelling of the basic partial differential equations, as well as the solutions in terms of the main special functions; considers the Laplace, Fourier, and Hankel transforms and their variations, offering a more logical continuation of the operational method; covers integral, discrete, and finite transforms and trigonometric Fourier and general orthogonal series expansion, providing an application to signal analysis and boundary-value problems; and examines the practical approximation of computing the resulting Fourier series or integral representation of the final solution and treats the errors incurred.;Containing many detailed examples and numerous end-of-chapter exercises of varying difficulty for each section with answers, Integral and Discrete Transforms with Applications and Error Analysis is a thorough reference for analysts; industrial and applied mathematicians; electrical, electronics, and other engineers; and physicists and an informative text for upper-level undergraduate and graduate students in these disciplines.
目次
- Part 1 Compatible transforms: the method of separation of variables and the integral transforms
- compatible transforms
- classification of the transforms
- comments on the inverse transforms - tables of the transforms
- the compatible transform and the adjoint problem
- constructing the compatible transforms for self-adjoint problems - second-order differential equations
- the nth-order differential operator. Part 2 Integral transforms: Laplace transforms
- Fourier exponential transforms
- boundary and initial value problems - solutions by Fourier transforms
- signals and linear systems - representation in the Fourier (spectrum) space
- Fourier sine and cosine transforms
- higher-dimensional Fourier transforms
- the Hankel (bessel) tranforms
- Laplace transform inversion
- other important integral transforms. Part 3 Finite transforms - Fourier series and coefficients: Fourier (trigonometric) series and general orthogonal expansion
- Fourier sine and cosine transforms
- Fourier (exponential) transforms
- Hankel (bessel) transforms
- classical orthogonal polynomial transforms
- the generalized sampling expansion
- a remark on the transform methods and nonlinear problems. Part 4 Discrete transforms
- discrete Fourier transforms
- discrete orthogonal polynomial transforms
- bessel-type poisson summation formula (for the Bessel-Fourier series and Hankel transforms). Appendix A: basic second-order differential equations and their (series) solutions - special functions. Appendix B: mathematical modeling of partial differential equations - boundary and initial value problems. Appendix C: tables of transforms.
「Nielsen BookData」 より