Symmetries and Laplacians : introduction to harmonic analysis, group representations and applications
著者
書誌事項
Symmetries and Laplacians : introduction to harmonic analysis, group representations and applications
(North-Holland mathematics studies, 174)
North-Holland, 1992
大学図書館所蔵 全46件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. [439]-446) and index
内容説明・目次
内容説明
Designed as an introduction to harmonic analysis and group representations,this book covers a wide range of topics rather than delving deeply into anyparticular one. In the words of H. Weyl ...it is primarily meant forthe humble, who want to learn as new the things set forth therein, rather thanfor the proud and learned who are already familiar with the subject and merelylook for quick and exact information....The main objective is tointroduce the reader to concepts, ideas, results and techniques that evolvearound symmetry-groups, representations and Laplacians. Morespecifically, the main interest concerns geometrical objects and structures{<!-- -->X}, discrete or continuous, that possess sufficiently large symmetrygroup G, such as regular graphs (Platonic solids), lattices, andsymmetric Riemannian manifolds. All such objects have a natural Laplacian , a linear operator on functions over X, invariant underthe group action. There are many problems associated with Laplacians onX, such as continuous or discrete-time evolutions, on X,random walks, diffusion processes, and wave-propagation. This book containssufficient material for a 1 or 2-semester course.
目次
Basics of Representation Theory. Commutative Harmonic Analysis.Representations of Compact and Finite Groups. Lie Groups SU(2) and SO(3).Classical Compact Lie Groups and Algebras. The Heisenberg Group and SemidirectProducts. Representations of SL2. Lie Groups and HamiltonianMechanics. Appendices: Spectral Decomposition of Selfadjoint Operators.Integral Operators. A Primer on Riemannian Geometry: Geodesics, Connection,Curvature. References. List of Frequently Used Notations. Index.
「Nielsen BookData」 より