Ondes de gradients multidimensionnelles
著者
書誌事項
Ondes de gradients multidimensionnelles
(Memoirs of the American Mathematical Society, no. 511)
American Mathematical Society, 1993
大学図書館所蔵 件 / 全16件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
"November 1993, volume 106, number 511 (end of volume)"--T.p
Includes bibliographical references (p. 92-93)
内容説明・目次
内容説明
Recent techniques in partial differential equations have led to a solution to the general multidimensional Cauchy problem for nonlinear gradient waves. In a blown-up configuration, Sable-Tougeron constructs a local solution for a quasilinear hyperbolic system with continuous Cauchy data, in which the first derivatives are discontinuous on a hyper surface. This strong singularity is not so problematic as a rarefaction: The use of Alinhac's para-unknown leads to a tame inequality without loss of derivatives for the iterative scheme.
目次
Formulation du probleme, enonce du resultat L'inegalite Espaces et calcul paradifferentiel adaptes L'inegalite tame: premiere etape, paralinearisation L'inegalite tame, inegalites conormales du modele paradifferentiel Linegalite tame fermee Les estimations Les equations eiconales Le probleme non lineaire Appendice Bibliographie.
「Nielsen BookData」 より