The algebraic characterization of geometric 4-manifolds

書誌事項

The algebraic characterization of geometric 4-manifolds

J.A. Hillman

(London Mathematical Society lecture note series, 198)

Cambridge University Press, 1994

大学図書館所蔵 件 / 72

この図書・雑誌をさがす

注記

Includes bibliographical references (p. 160-168) and index

内容説明・目次

内容説明

This book describes work, largely that of the author, on the characterization of closed 4-manifolds in terms of familiar invariants such as Euler characteristic, fundamental group, and Stiefel-Whitney classes. Using techniques from homological group theory, the theory of 3-manifolds and topological surgery, infrasolvmanifolds are characterized up to homeomorphism, and surface bundles are characterized up to simple homotopy equivalence. Non-orientable cases are also considered wherever possible, and in the final chapter the results obtained earlier are applied to 2-knots and complex analytic surfaces. This book is essential reading for anyone interested in low-dimensional topology.

目次

  • Preface
  • 1. Algebraic preliminaries
  • 2. General results on the homotopy type of 4-manifolds
  • 3. Mapping tori and circle bundles
  • 4. Surface bundles
  • 5. Simple homotopy type, s-cobordism and homeomorphism
  • 6. Aspherical geometries
  • 7. Manifolds covered by S2 x R2
  • 8. Manifolds covered by S3 x R
  • 9. Geometries with compact models
  • 10. Applications to 2-knots and complex surfaces
  • Appendix
  • Problems
  • References
  • Index.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

  • NII書誌ID(NCID)
    BA21777348
  • ISBN
    • 0521467780
  • 出版国コード
    uk
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    Cambridge
  • ページ数/冊数
    ix, 170 p.
  • 大きさ
    23 cm
  • 分類
  • 親書誌ID
ページトップへ