Real and étale cohomology

Bibliographic Information

Real and étale cohomology

Claus Scheiderer

(Lecture notes in mathematics, 1588)

Springer-Verlag, c1994

  • : gw
  • : us

Available at  / 96 libraries

Search this Book/Journal

Note

Includes bibliographical references (p. [263])-266) and symbol and subject indexes

Description and Table of Contents

Description

This book makes a systematic study of the relations between the etale cohomology of a scheme and the orderings of its residue fields. A major result is that in high degrees, etale cohomology is cohomology of the real spectrum. It also contains new contributions in group cohomology and in topos theory. It is of interest to graduate students and researchers who work in algebraic geometry (not only real) and have some familiarity with the basics of etale cohomology and Grothendieck sites. Independently, it is of interest to people working in the cohomology theory of groups or in topos theory.

Table of Contents

Real spectrum and real etale site.- Glueing etale and real etale site.- Limit theorems, stalks, and other basic facts.- Some reminders on Weil restrictions.- Real spectrum of X and etale site of .- The fundamental long exact sequence.- Cohomological dimension of X b , I: Reduction to the field case.- Equivariant sheaves for actions of topological groups.- Cohomological dimension of X b , II: The field case.- G-toposes.- Inverse limits of G-toposes: Two examples.- Group actions on spaces: Topological versus topos-theoretic constructions.- Quotient topos of a G-topos, for G of prime order.- Comparison theorems.- Base change theorems.- Constructible sheaves and finiteness theorems.- Cohomology of affine varieties.- Relations to the Zariski topology.- Examples and complements.

by "Nielsen BookData"

Related Books: 1-1 of 1

Details

Page Top