The mathematical theory of dilute gases
著者
書誌事項
The mathematical theory of dilute gases
(Applied mathematical sciences, v. 106)
Springer-Verlag, c1994
- : us
- : gw
大学図書館所蔵 件 / 全62件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
Includes bibliographical references and index
内容説明・目次
- 巻冊次
-
: us ISBN 9780387942940
内容説明
The idea for this book was conceived by the authors some time in 1988, and a first outline of the manuscript was drawn up during a summer school on mathematical physics held in Ravello in September 1988, where all three of us were present as lecturers or organizers. The project was in some sense inherited from our friend Marvin Shinbrot, who had planned a book about recent progress for the Boltzmann equation, but, due to his untimely death in 1987, never got to do it. When we drew up the first outline, we could not anticipate how long the actual writing would stretch out. Our ambitions were high: We wanted to cover the modern mathematical theory of the Boltzmann equation, with rigorous proofs, in a complete and readable volume. As the years progressed, we withdrew to some degree from this first ambition- there was just too much material, too scattered, sometimes incomplete, sometimes not rigor ous enough. However, in the writing process itself, the need for the book became ever more apparent. The last twenty years have seen an amazing number of significant results in the field, many of them published in incom plete form, sometimes in obscure places, and sometimes without technical details. We made it our objective to collect these results, classify them, and present them as best we could. The choice of topics remains, of course, subjective.
- 巻冊次
-
: gw ISBN 9783540942948
内容説明
This book is devoted to the presentation of rigorous mathematical results in the kinetic theory of a gas of hard spheres. Recent developments as well as classical results are presented in a unified way, such that the book should become the standard reference on the subject. There is no such book available at present. The reader will find a systematic treatment of the main mathematical results, a discussion of open problems, and a guide to the existing literature. There is a rigorous and comprehensive presentation of strict validation of the Boltzmann equations, global existence theory, and the fluid-dynamical limits. The authors also review and discuss classical derivation and properties of the Boltzmann equation, particle simulation methods, and boundary conditions.
「Nielsen BookData」 より