Représentations l-modulaires d'un groupe réductif p-adique avec l≠p
著者
書誌事項
Représentations l-modulaires d'un groupe réductif p-adique avec l≠p
(Progress in mathematics, v. 137)
Birkhäuser, c1996
- : us
- : gw
大学図書館所蔵 件 / 全68件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
Includes bibliographical references (p. 223-226) and index
内容説明・目次
内容説明
Taking up the works of Harish-Chandra, Langlands, Borel, Casselman, Bernstein and Zelevinsky, among others, on the complex representation theory of a p -adic reductive group G, the author explores the representations of G over an algebraic closure Fl of a finite field Fl with l1 p elements, which are called 'modular representations'. The main feature of the book is to develop the theory of types over Fl, and to use this theory to prove fundamental results in the theory of modular representations. "The present book is of evident importance to everyone interested in the representation theory of p-adic groups....The monograph starts on an elementary level laying proper foundations for the things to come and then proceeds directly to results of recent research." --Zentralblatt
「Nielsen BookData」 より