Additive number theory : inverse problems and the geometry of sumsets

書誌事項

Additive number theory : inverse problems and the geometry of sumsets

Melvyn B. Nathanson

(Graduate texts in mathematics, 165)

Springer, c1996

大学図書館所蔵 件 / 115

この図書・雑誌をさがす

注記

Includes bibliographical reference(p.[283]-291) and index

内容説明・目次

内容説明

Many classical problems in additive number theory are direct problems, in which one starts with a set A of natural numbers and an integer H -> 2, and tries to describe the structure of the sumset hA consisting of all sums of h elements of A. By contrast, in an inverse problem, one starts with a sumset hA, and attempts to describe the structure of the underlying set A. In recent years there has been ramrkable progress in the study of inverse problems for finite sets of integers. In particular, there are important and beautiful inverse theorems due to Freiman, Kneser, Plunnecke, Vosper, and others. This volume includes their results, and culminates with an elegant proof by Ruzsa of the deep theorem of Freiman that a finite set of integers with a small sumset must be a large subset of an n-dimensional arithmetic progression.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

  • NII書誌ID(NCID)
    BA28326766
  • ISBN
    • 0387946551
  • LCCN
    96012929
  • 出版国コード
    us
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    New York ; Tokyo
  • ページ数/冊数
    xiv, 293 p.
  • 大きさ
    25 cm
  • 分類
  • 件名
  • 親書誌ID
ページトップへ