Machine learning
著者
書誌事項
Machine learning
(McGraw-Hill computer science series, Artificial intelligence)
McGraw-Hill, c1997
大学図書館所蔵 件 / 全74件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
Includes bibliographical references and indexes
内容説明・目次
内容説明
This book covers the field of machine learning, which is the study of algorithms that allow computer programs to automatically improve through experience. The book is intended to support upper level undergraduate and introductory level graduate courses in machine learning.
目次
Chapter 1. IntroductionChapter 2. Concept Learning and the General-to-Specific OrderingChapter 3. Decision Tree LearningChapter 4. Artificial Neural NetworksChapter 5. Evaluating HypothesesChapter 6. Bayesian LearningChapter 7. Computational Learning TheoryChapter 8. Instance-Based LearningChapter 9. Inductive Logic ProgrammingChapter 10. Analytical LearningChapter 11. Combining Inductive and Analytical LearningChapter 12. Reinforcement Learning.
「Nielsen BookData」 より