The dynamical system generated by the 3n + 1 function
著者
書誌事項
The dynamical system generated by the 3n + 1 function
(Lecture notes in mathematics, 1681)
Springer, c1998
- : softcover
大学図書館所蔵 件 / 全89件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
Includes bibliographical references (p. [141]-145) and indexes
内容説明・目次
内容説明
The 3n+1 function T is defined by T(n)=n/2 for n even, and T(n)=(3n+1)/2 for n odd. The famous 3n+1 conjecture, which remains open, states that, for any starting number n>0, iterated application of T to n eventually produces 1. After a survey of theorems concerning the 3n+1 problem, the main focus of the book are 3n+1 predecessor sets. These are analyzed using, e.g., elementary number theory, combinatorics, asymptotic analysis, and abstract measure theory. The book is written for any mathematician interested in the 3n+1 problem, and in the wealth of mathematical ideas employed to attack it.
目次
Some ideas around 3n+1 iterations.- Analysis of the Collatz graph.- 3-adic averages of counting functions.- An asymptotically homogeneous Markov chain.- Mixing and predecessor density.
「Nielsen BookData」 より