Weight theory for integral transforms on spaces of homogeneous type

書誌事項

Weight theory for integral transforms on spaces of homogeneous type

Ioseb Genebashvili ... [et al.]

(Pitman monographs and surveys in pure and applied mathematics, 92)

Addison Wesley Longman, 1998

  • : (alk. paper)

大学図書館所蔵 件 / 35

この図書・雑誌をさがす

注記

Includes bibliographical references (p. 392-408) and index

内容説明・目次

内容説明

This volume gives an account of the current state of weight theory for integral operators, such as maximal functions, Riesz potential, singular integrals and their generalization in Lorentz and Orlicz spaces. Starting with the crucial concept of a space of homogeneous type, it continues with general criteria for the boundedness of the integral operators considered, then address special settings and applications to classical operators in Euclidean spaces.

目次

  • Basic ingredients
  • maximal functions in Lorentz spaces
  • two weight inequalities for integral transforms with a positive kernel
  • two weight inequalities of strong type for the fractional maximal function
  • maximal functions in phi(L) classes
  • weighted inequalities of weak type for the maximal function
  • one weight inequalities of strong type for the maximal function in phi(l) classes
  • weighted inequalities for singular integrals
  • two weight inequalities for singular integrals on homogenous groups
  • inequalities in weighted Morrey-Campanato spaces and BMO
  • two weight imbedding theorems
  • applications to some BVPs.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

ページトップへ