Ball and surface arithmetics
著者
書誌事項
Ball and surface arithmetics
(Aspects of mathematics = Aspekte der Mathematik, E ; v. 29)
Vieweg, c1998
大学図書館所蔵 全42件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Bibliography: p. 406-414
Includes index
内容説明・目次
内容説明
Bei hoherdimensionalen komplexen Mannigfaltigkeiten stellt die Riemann-Roch-Theorie die grundlegende Verbindung von analytischen bzw. algebraischen zu topologischen Eigenschaften her. Dieses Buch befasst sich mit Mannigfaltigkeiten der komplexen Dimension 2, d. h. mit komplexen Flachen. Hauptziel der Monographie ist es, neue rationale diskrete Invarianten (Hohen) in die Theorie komplexer Flachen explizit einzufuhren und ihre Anwendbarkeit auf konkrete aktuelle Probleme darzustellen.Als erste unmittelbare Anwendung erhalt man explizit und ganz allgemein Formeln vom Hurwitz-Typ endlicher Flachenuberlagerungen fur die vier klassischen Invarianten, die auf andere Weise bisher nur in Spezialfallen zuganglich waren. Ein weiteres Anwendungsgebiet ist die Theorie der Picardschen Modulflachen: Neue Resultate werden beschrieben. Letztendlich kann im letzten Kapitel eine Erganzung des bekannten Satzes von Bogomolov-Miyaoka-Yau mit Hilfe der Hohentheorie gezeigt werden. The monograph presents basically an arithmetic theory of orbital surfaces with cusp singularities. As main invariants orbital hights are introduced, not only for the surfaces but also for the components of orbital cycles.
These invariants are rational numbers with nice functorial properties allowing precise formulas of Hurwitz type and a fine intersection theory for orbital cycles. For ball quotient surfaces they appear as volumes of fundamental domains. In the special case of Picard modular surfaces they are discovered by special value of Dirichlet L-series or higher Bernoulli numbers. As a central point of the monograph a general Proportionality Theorem in terms of orbital hights is proved. It yields a strong criterion to decide effectively whether a surface with given cycle supports a ball quotient structure being Kaehler-Einstein with negative constant holomorphic sectional curvature outside of this cycle. The theory is applied to the classification of Picard modular surfaces and to surfaces geography.
目次
1 Abelian Points.- 1.1 Cyclic Points.- 1.2 Graphs of Abelian Points.- 1.3 Geometric Interpretation.- 1.4 Derived Representations.- 1.5 The Differential Relation.- 1.6 Stepwise Resolutions of Cyclic Points.- 1.7 Continued Fractions and Selfintersection Numbers.- 1.8 Reciprocity Law for Geometric Sums.- 1.9 Explicit Dedekind Sums.- 1.10 Eisenstein Sums.- 1.11 Hirzebruch's Sum.- 1.12 Geometric Interpretation.- 1.13 Quotients and Coverings of Modifications.- 1.14 Selfintersections of Quotient Curves.- 1.15 The Bridge Algorithm.- 1.16 First Orbital Properties.- 1.17 Local Orbital Euler Numbers.- 1.18 Absorptive Numbers.- 2 Orbital Curves.- 2.1 Point Arrangements on Curves.- 2.2 Euler Heights of Orbital Curves.- 2.3 The Geometric Local-Global Principle.- 2.4 Signature Heights of Orbital Curves.- 3 Orbital Surfaces.- 3.1 Regular Arrangements on Surfaces.- 3.2 Basic Invariants and Fixed Point Theorem.- 3.3 Euler Heights.- 3.4 Signature Heights.- 3.5 Quasi-homogeneous Points, Quotient Points and Cusp Points.- 3.6 Quasi-smooth Orbital Surfaces.- 3.7 Open Orbital Surfaces.- 3.8 Orbital Decompositions.- 4 Ball Quotient Surfaces.- 4.1 Ball Lattices.- 4.2 Neat Ball Cusp Lattices.- 4.3 Invariants of Neat Ball Quotient Surfaces.- 4.4 ?-Rational Discs.- 4.5 Cusp Singularities, Reflections and Elliptic Points.- 4.6 Orbital Ball Quotient Surfaces and Molecular.- 4.7 Invariants of Disc Quotient Curves.- 4.8 Invariants of Ball Quotient Surfaces.- 4.9 Global Proportionality.- 4.10 Orbital Decompositions and the Finiteness Theorem.- 4.11 Leading Examples.- 4.12 Towards the Count of Ball Metrics on Non-Compact Surfaces.- 5 Picard Modular Surfaces.- 5.1 Classification Diagram.- 5.2 Picard Modular Surface of the Field of Eisenstein Numbers.- 5.3 Picard Modular Surface of the Field of Gauss-Numbers.- 5.4 Kodaira Classification of Picard Modular Surfaces.- 5.5 Special Results and Examples.- 5A Volumes of Fundamental Domains of Picard Modular Groups.- 5A.1 The Order of Finite Unitary Groups.- 5A.2 Index of Congruence Subgroups.- 5A.3 Local Volumina.- 5A.4 The Global Volume.- 6 ?-Orbital Surfaces.- 6.1 Introduction.- 6.2 Arrangements with Rational Coefficients.- 6.3 Finite Morphisms of ?-Orbital Surfaces.- 6.4 Functorial Properties for Rational Invariants.- 6.5 Euler and Signature Heights.- 6.6 Reduction of Galois-Finite Morphisms.- 6.7 Local Base Changes.- 6.8 Global Base Changes.- 6.9 Explicit Hurwitz Formulas for Finite Surface Coverings.- 6.10 Finite Coverings of Ruled Surfaces and the Inequality c12 ? 2c2.
「Nielsen BookData」 より