Partial differential equations in Clifford analysis
著者
書誌事項
Partial differential equations in Clifford analysis
(Pitman monographs and surveys in pure and applied mathematics, v. 96)
Longman, 1998
大学図書館所蔵 全34件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
内容説明・目次
内容説明
Clifford analysis represents one of the most remarkable fields of modern mathematics. With the recent finding that almost all classical linear partial differential equations of mathematical physics can be set in the context of Clifford analysis-and that they can be obtained without applying any physical laws-it appears that Clifford analysis itself can suggest new equations or new generalizations of classical equations that may have some physical content.
Partial Differential Equations in Clifford Analysis considers-in a multidimensional space-elliptic, hyperbolic, and parabolic operators related to Helmholtz, Klein-Gordon, Maxwell, Dirac, and heat equations. The author addresses two kinds of parabolic operators, both related to the second-order parabolic equations whose principal parts are the Laplacian and d'Alembertian: an elliptic-type parabolic operator and a hyperbolic-type parabolic operator. She obtains explicit integral representations of solutions to various boundary and initial value problems and their properties and solves some two-dimensional and non-local problems.
Written for the specialist but accessible to non-specialists as well, Partial Differential Equations in Clifford Analysis presents new results, reformulations, refinements, and extensions of familiar material in a manner that allows the reader to feel and touch every formula and problem. Mathematicians and physicists interested in boundary and initial value problems, partial differential equations, and Clifford analysis will find this monograph a refreshing and insightful study that helps fill a void in the literature and in our knowledge.
目次
Introduction
Principles of Clifford Algebra and Analysis
The Basic Notions and Definitions
Matrix Representations of Clifford Algebras for any Dimension
Differential Operators and Classification
Lorentz Transformations in the Elliptic and Hyperbolic Cases
Elliptic Partial Differential Equations
Introduction
Cauchy Kernel and Representations for h-regular Functions in R(n)
Extension Theorems and The Riemann-Schwarz Principle of Reflection
The Poincare-Bertrand Transformation Formula
Generalized Riesz System
The Basic L-Theory of the Fourier Integral Transformation
Boundary Value Problems for Regular Functions with Values in R(n)
Boundary Value Problems for h-Regular Functions with Values in R(n), n(3)1
The Beltrami Equation in R(n)
Hyperbolic Partial Differential Equations
Introduction
Generalized Maxwell and Dirac Equations
The Hyperbolic Beltrami Equation
Initial Value Problems for the Klein-Gordon Equation
Cauchy's Initial Value Problem and its Modification for the Regular and h-Regular Functions with Values in R(n,n-1) and in R(n,n-2), n(3)3
Parabolic Partial Differential Equations
Introduction
Parabolic Regular System of the First Kind
Initial Value Problems for Parabolic Equations of the First Kind
Parabolic Regular Equations of the Second Kind and Initial Value Problems
Effective Solutions for Some Non-Local Problems
Introduction
Wiener-Hopf and Dual Integral Equations of Convolution Type
Generalized Wiener-Hopf Integral Equation with Two Kernels Depending on the Difference and Sum of the Arguments
Dual Integral Equations with Kernels Depending on the Difference and Sum of Arguments
Non-Local Problems for Holomorphic Functions and Applications in Elasticity Theory
Non-Local Problems for Generalized Holomorphic Functions and the Generalized Beltrami Equation
Non-Local Problems for Polyharmonic Functions
Epilogue
Bibliography
「Nielsen BookData」 より