Introduction to the theory and applications of functional differential equations
著者
書誌事項
Introduction to the theory and applications of functional differential equations
(Mathematics and its applications, v. 463)
Kluwer Academic Publishers, c1999
- : hd : alk. pap
大学図書館所蔵 件 / 全28件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
Includes bibliographical references(p. 601-641) and index
内容説明・目次
内容説明
At the beginning of this century Emil Picard wrote: "Les equations differentielles de la mecanique classique sont telles qu 'il en resulte que le mouvement est determine par la simple connaissance des positions et des vitesses, c 'est-a-dire par l 'etat a un instant donne et a ['instant infiniment voison. Les etats anterieurs n'y intervenant pas, l'heredite y est un vain mot. L 'application de ces equations ou le passe ne se distingue pas de l 'avenir, ou les mouvements sont de nature reversible, sont done inapplicables aux etres vivants". "Nous pouvons rever d'equations fonctionnelles plus compliquees que les equations classiques parce qu 'elles renfermeront en outre des integrates prises entre un temps passe tres eloigne et le temps actuel, qui apporteront la part de l'heredite". (See "La mathematique dans ses rapports avec la physique, Actes du rv* congres international des Mathematiciens, Rome, 1908. ) Many years have passed since this publication. These years have seen substantial progress in many aspects of Functional Differential Equations (FDEs ).
A distinguishing feature of the FDEs under consideration is that the evolution rate of the proc{lsses described by such equations depends on the past history. The discipline of FDEs has grown tremendously, and publication of literature has increased perhaps twofold over publication in the previous decade. Several new scientific journals have been introduced to absorb this increased productivity. These journals reflect the broadening interests of scientists, with ever greater attention being paid to applications.
目次
Part I: Modelling by Functional Differential Equations. 1. Theoretical Preliminaries. 2. Models. Part II: Theoretical Background of Functional Differential Equations. 3. General Theory. Part III: Stability. 4. Stability of Retarded Differential Equations. 5. Stability of RDEs with Autonomous Linear Part. 6. Liapunov Functionals for Concrete FDEs. 7. Riccati Type Stability Conditions of Some Linear Systems with Delay. 8. Stability of Neutral Type Functional Differential Equations. 9. Applications of the Direct Liapunov Method. 10. Stability of Stochastic Functional Differential Equations. Part IV: Boundary Value Problems and Periodic Solutions of Differential Equations. 11. Boundary Value Problems for Functional Differential Equations. 12. Fredholm Alternative for Periodic Solutions of Linear FDEs. 13. Generalized Periodic Solutions of Functional Differential Equations. Part V: Control and Estimation in Hereditary Systems. 14. Problems of Control for Deterministic FDEs. 15. Optimal Control of Stochastic Delay Systems. 16. State Estimates of Stochastic Systems with Delay. Bibliography. Index.
「Nielsen BookData」 より