Random walks in the quarter-plane : algebraic methods, boundary value problems and applications
著者
書誌事項
Random walks in the quarter-plane : algebraic methods, boundary value problems and applications
(Applications of mathematics, 40)
Springer, c1999
- : hardcover
大学図書館所蔵 全43件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references and index
内容説明・目次
内容説明
Promoting original mathematical methods to determine the invariant measure of two-dimensional random walks in domains with boundaries, the authors use Using Riemann surfaces and boundary value problems to propose completely new approaches to solve functional equations of two complex variables. These methods can also be employed to characterize the transient behavior of random walks in the quarter plane.
目次
and History.- 1 Probabilistic Background.- 1.1 Markov Chains.- 1.2 Random Walks in a Quarter Plane.- 1.3 Functional Equations for the Invariant Measure.- 2 Foundations of the Analytic Approach.- 2.1 Fundamental Notions and Definitions.- 2.1.1 Covering Manifolds.- 2.1.2 Algebraic Functions.- 2.1.3 Elements of Galois Theory.- 2.1.4 Universal Cover and Uniformization.- 2.1.5 Abelian Differentials and Divisors.- 2.2 Restricting the Equation to an Algebraic Curve.- 2.2.1 First Insight (Algebraic Functions).- 2.2.2 Second Insight (Algebraic Curve).- 2.2.3 Third Insight (Factorization).- 2.2.4 Fourth Insight (Riemann Surfaces).- 2.3 The Algebraic Curve Q(x, y) = 0.- 2.3.1 Branches of the Algebraic Functions on the Unit Circle.- 2.3.2 Branch Points.- 2.4 Galois Automorphisms and the Group of the Random Walk.- 2.4.1 Construction of the Automorphisms ?? and ?? on S.- 2.5 Reduction of the Main Equation to the Riemann Torus.- 3 Analytic Continuation of the Unknown Functions in the Genus 1 Case.- 3.1 Lifting the Fundamental Equation onto the Universal Covering.- 3.1.1 Lifting of the Branch Points.- 3.1.2 Lifting of the Automorphisms on the Universal Covering.- 3.2 Analytic Continuation.- 3.3 More about Uniformization.- 4 The Case of a Finite Group.- 4.1On the Conditions for H to be Finite.- 4.1.1 Explicit Conditions for Groups of Order 4 or 6.- 4.1.2 The General Case.- 4.2 Rational Solutions.- 4.2.1 The Case N(f) ? 1.- 4.2.2 The Case N(f) = 1.- 4.3 Algebraic Solution.- 4.3.1 The Case N(f) = 1.- 4.3.2 The Case N(f) ?.- 4.4 Final Form of the General Solution.- 4.5 The Problem of the Poles and Examples.- 4.5.1 Rational Solutions.- 4.5.1.1 Reversible Random Walks.- 4.5.1.2 Simple Examples of Nonreversible Random Walks.- 4.5.1.3 One Parameter Families.- 4.5.1.4 Two Typical Situations.- 4.5.1.5 Ergodicity Conditions.- 4.5.1.6 Proof of Lemma 4.5.2.- 4.6 An Example of Algebraic Solution by Flatto and Hahn.- 4.7 Two Queues in Tandem.- 5 Solution in the Case of an Arbitrary Group.- 5.1 Informal Reduction to a Riemann-Hilbert-Carleman BVP.- 5.2 Introduction to BVP in the Complex Plane.- 5.2.1 A Bit of History.- 5.2.2 The Sokhotski-Plemelj Formulae.- 5.2.3 The Riemann Boundary Value Problem for a Closed Contour.- 5.2.4 The Riemann BVP for an Open Contour.- 5.2.5 The Riemann-Carleman Problem with a Shift.- 5.3 Further Properties of the Branches Defined by Q(x, y)= 0.- 5.4 Index and Solution of the BVP (5.1.5).- 5.5 Complements.- 5.5.1 Analytic Continuation.- 5.5.2 Computation of w.- 5.5.2.1 An Explicit Form via the Weierstrass ?-Function..- 5.5.2.2 A Differential Equation.- 5.5.2.3 An Integral Equation.- 6 The Genus 0 Case.- 6.1 Properties of the Branches.- 6.2 Case 1: ?01 = ??1,0 = ??1,1 = 0.- 6.3 Case 3: ?11 = ?10 = ?01 = 0.- 6.4 Case 4: ??1,0 = ?0,?1 = ??1,?1= 0.- 6.4.1 Integral Equation.- 6.4.2 Series Representation.- 6.4.3 Uniformization.- 6.4.4 Boundary Value Problem.- 6.5 Case 5: MZ= My= 0.- 7 Miscellanea.- 7.1 About Explicit Solutions.- 7.2 Asymptotics.- 7.2.1 Large Deviations and Stationary Probabilities.- 7.3 Generalized Problems and Analytic Continuation.- 7.4 Outside Probability.- References.
「Nielsen BookData」 より