Classification and orbit equivalence relations


Classification and orbit equivalence relations

Greg Hjorth

(Mathematical surveys and monographs, no. 75)

American Mathematical Society, c2000

大学図書館所蔵 件 / 52



Includes bibliographical references and index



Actions of Polish groups are ubiquitous in mathematics. In certain branches of ergodic theory and functional analysis, one finds a systematic study of the group of measure-preserving transformations and the unitary group. In logic, the analysis of countable models intertwines with results concerning the actions of the infinite symmetric group. This text develops the theory of Polish group actions entirely from scratch, ultimately presenting a coherent theory of the resulting orbit equivalence classes that may allow complete classification by invariants of an indicated form.The book concludes with a criterion for an orbit equivalence relation classifiable by countable structures considered up to isomorphism. This self-contained volume offers a complete treatment of this active area of current research and develops a difficult general theory classifying a class of mathematical objects up to some relevant notion of isomorphism or equivalence. Greg Hjorth received the Carol Karp Prize for outstanding work on turbulence and countable Borel equivalence relations from the Association of Symbolic Logic.


An outline Definitions and technicalities Turbulence Classifying homeomorphisms Infinite dimensional group representations A generalized Scott analysis GE groups The dark side Beyond Borel Looking ahead Ordinals Notation Bibliography Index.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示