Lectures on probability theory and statistics : École d'été de probabilités de Saint-Flour XXVII--1997
著者
書誌事項
Lectures on probability theory and statistics : École d'été de probabilités de Saint-Flour XXVII--1997
(Lecture notes in mathematics, 1717)
Springer, c1999
大学図書館所蔵 件 / 全79件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
Bibliography: p. [275]-280
内容説明・目次
目次
Part I, Bertoin, J.: Subordinators: Examples and Applications:
Foreword.- Elements on subordinators.- Regenerative property.- Asymptotic behaviour of last passage times.- Rates of growth of local time.- Geometric properties of regenerative sets.- Burgers equation with Brownian initial velocity.- Random covering.- Levy processes.- Occupation times of a linear Brownian motion.-
Part II, Martinelli, F.: Lectures on Glauber Dynamics for Discrete Spin Models: Introduction.- Gibbs Measures of Lattice Spin Models.- The Glauber Dynamics.- One Phase Region.- Boundary Phase Transitions.- Phase Coexistence.- Glauber Dynamics for the Dilute Ising Model.-
Part III, Peres, Yu.: Probability on Trees: An Introductory Climb: Preface.- Basic Definitions and a Few Highlights.- Galton-Watson Trees.- General percolation on a connected graph.- The first-Moment method.- Quasi-independent Percolation.- The second Moment Method.- Electrical Networks.- Infinite Networks.- The Method of Random Paths.- Transience of Percolation Clusters.- Subperiodic Trees.- The Random Walks RW (lambda) .- Capacity.-.Intersection-Equivalence.- Reconstruction for the Ising Model on a Tree,- Unpredictable Paths in Z and EIT in Z3.- Tree-Indexed Processes.- Recurrence for Tree-Indexed Markov Chains.- Dynamical Pecsolation.- Stochastic Domination Between Trees.
「Nielsen BookData」 より