Subplane covered nets
著者
書誌事項
Subplane covered nets
(Monographs and textbooks in pure and applied mathematics, 222)
Marcel Dekker, c2000
大学図書館所蔵 件 / 全36件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
Bibliography: p. 353-358
Includes index
内容説明・目次
内容説明
This work confronts the question of geometric processes of derivation, specifically the derivation of affine planes - keying in on construction techniques and types of transformations in which lines of a newly-created plane can be understood as subplanes of the original plane. The book provides a theory of subplane covered nets without restriction to the finite case or imposing commutativity conditions.
目次
- A brief overview
- projective geometries
- beginning derivation
- spreads
- derivable nets
- the Hughes planes
- Desarguesian planes
- Pappian planes
- characterizations of geometries
- derivable nets and geometries
- structure theory for derivable nets
- dual spreads and Baer subplanes
- derivation as a geometric process
- embedding
- classification of subplane covered nets
- subplane covered affine planes
- direct products
- parallelisms
- partial parallelisms with deficiency
- Baer extensions
- translation planes admitting Baer groups
- spreads covered by pseudo-Reguli
- conical and ruled planes over fields
- spreads which are dual spreads
- partial flocks of deficiency one
- Skew-Hall planes.
「Nielsen BookData」 より